Advances and Open Problems in Federated Learningкнига
Аннотация: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more. This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems. Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.
Год издания: 2021
Авторы: Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, H. Jerry Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
Ключевые слова: Privacy-Preserving Technologies in Data, Cryptography and Data Security, Mobile Crowdsensing and Crowdsourcing
Другие ссылки: doi.org (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
LillOA (Université de Lille (University Of Lille)) (PDF)
LillOA (Université de Lille (University Of Lille)) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
DataCite API (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
LillOA (Université de Lille (University Of Lille)) (PDF)
LillOA (Université de Lille (University Of Lille)) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
DataCite API (HTML)
Открытый доступ: green