Convection and Dynamo in Newly Born Neutron Starsстатья из журнала
Аннотация: To study properties of magneto-hydrodynamic (MHD) convection and resultant dynamo activities in proto-neutron stars (PNSs), we construct a "PNS in a box" simulation model with solving compressible MHD equation coupled with a nuclear equation of state (EOS) and a simplified leptonic transport. As a demonstration, we apply it to two types of PNS models with different internal structures: fully-convective model and spherical-shell convection model. By varying the spin rate of models, the rotational dependence of convection and dynamo that operate inside the PNS is investigated. We find that, as a consequence of turbulent transport by rotating stratified convection, large-scale structures of flow and thermodynamic fields are developed in all models. Depending on the spin rate and the convection zone depth, various profiles of the large-scale structures are obtained, which can be physically understood as steady-state solutions to the "mean-field" equation of motion. Additionally to those hydrodynamic structures, the large-scale magnetic component with $\mathcal{O}(10^{15})$ G is also spontaneously organized in disordered tangled magnetic fields in all models. The higher the spin rate, the stronger the large-scale magnetic component is built up. Intriguingly, as an overall trend, the fully-convective models have a stronger large-scale magnetic component than that in the spherical-shell convection models. The deeper the convection zone extends, the larger the size of the convection eddies becomes. As a result, the rotationally-constrained convection seems to be more easily achieved in the fully-convective model, resulting in the higher efficiency of the large-scale dynamo there. To gain a better understanding of the origin of the diversity of NS's magnetic field, we need to study the PNS dynamo in a wider parameter range.
Год издания: 2022
Авторы: Youhei Masada, Tomoya Takiwaki, Kei Kotake
Издательство: IOP Publishing
Источник: The Astrophysical Journal
Ключевые слова: Solar and Space Plasma Dynamics, Geomagnetism and Paleomagnetism Studies, Stellar, planetary, and galactic studies
Другие ссылки: The Astrophysical Journal (PDF)
The Astrophysical Journal (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
DataCite API (HTML)
The Astrophysical Journal (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
arXiv (Cornell University) (PDF)
arXiv (Cornell University) (HTML)
DataCite API (HTML)
Открытый доступ: gold
Том: 924
Выпуск: 2
Страницы: 75–75