Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-artстатья из журнала
Аннотация: In recent years, there has been a growing research interest in integrating machine learning techniques into meta-heuristics for solving combinatorial optimization problems. This integration aims to lead meta-heuristics toward an efficient, effective, and robust search and improve their performance in terms of solution quality, convergence rate, and robustness. Since various integration methods with different purposes have been developed, there is a need to review the recent advances in using machine learning techniques to improve meta-heuristics. To the best of our knowledge, the literature is deprived of having a comprehensive yet technical review. To fill this gap, this paper provides such a review on the use of machine learning techniques in the design of different elements of meta-heuristics for different purposes including algorithm selection, fitness evaluation, initialization, evolution, parameter setting, and cooperation. First, we describe the key concepts and preliminaries of each of these ways of integration. Then, the recent advances in each way of integration are reviewed and classified based on a proposed unified taxonomy. Finally, we provide a technical discussion on the advantages, limitations, requirements, and challenges of implementing each of these integration ways, followed by promising future research directions.
Год издания: 2021
Авторы: Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad Karimi-Mamaghan, El‐Ghazali Talbi
Издательство: Elsevier BV
Источник: European Journal of Operational Research
Ключевые слова: Metaheuristic Optimization Algorithms Research, Advanced Multi-Objective Optimization Algorithms, Vehicle Routing Optimization Methods
Другие ссылки: European Journal of Operational Research (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
Открытый доступ: hybrid
Том: 296
Выпуск: 2
Страницы: 393–422