Аннотация:ABSTRACT Stress-adaptive mechanisms enable tumor cells to overcome metabolic constraints in nutrient and oxygen poor tumors. Aspartate is an endogenous metabolic limitation under hypoxic conditions, but the nature of the adaptive mechanisms that contribute to aspartate availability and hypoxic tumor growth are poorly understood. Here, using a combination of metabolomics and CRISPR-based genetic screens, we identify GOT2-catalyzed mitochondrial aspartate synthesis as an essential metabolic dependency for the proliferation of pancreatic tumor cells under hypoxic culture conditions. In contrast, GOT2-catalyzed aspartate synthesis is dispensable for pancreatic tumor formation in vivo . The dependence of pancreatic tumor cells on aspartate synthesis is bypassed in part by a hypoxia-induced potentiation of extracellular protein scavenging via macropinocytosis. This effect is mutant KRas-dependent, and is mediated by hypoxia inducible factor 1 (HIF1A) and its canonical target carbonic anhydrase-9 (CA9) through the cooption of the bicarbonate-macropinocytosis signaling axis. Our findings reveal high plasticity of aspartate metabolism and define an adaptive regulatory role for macropinocytosis by which mutant KRas tumors can overcome nutrient deprivation under hypoxic conditions.