Перейти к основному содержанию
Библиотечно-издательский комплекс СФУ
Toggle navigation
Ресурсы
Библиотечный поиск
Каталог изданий университета
Университетские информационные ресурсы
Российские информационные ресурсы
Мировые информационные ресурсы
Периодические издания
Тематические путеводители
Книгообеспеченность учебного процесса
Приобретение литературы
Читателю
Регистрация читателей
Получение и возврат литературы
Межбиблиотечный абонемент
Тематические путеводители
Обучение работе с ресурсами
Доступная среда библиотеки
Детская развивающая площадка
Подарить книгу библиотеке
Автору
Правила издания рукописей
План выпуска изданий
Размещение публикаций в библиотеке, репозитории, РИНЦ
Проверка
журнала
Служба поддержки публикационной
активности
Учёт публикаций в АИС
«Прометей»
Услуги
Справочник услуг и сервисов БИК
Новая заявка на услугу
Бронирование помещений
Контакты
Адреса и режим работы
Контакты
Вопрос-Ответ
Отправить отзыв
Ещё
О Научной библиотеке
Об Издательстве
Дилерство «САБ ИРБИС»
Красноярский ИРБИС-клуб
Литературный клуб «Высокий берег»
Подкаст «Пища для ума»
Вакансии
Часто задаваемые вопросы
Мобильное приложение
Карта сайта и поиск по сайту
Онлайн-медиа Научной библиотеки
Личный кабинет
Главная
Ресурсы
Библиотечный поиск
Local mechanical
behavior mapping of a
biopolymer blend
using
nanoindentation,
finite element
computation, and
simplex optimization
strategy
Sofiane Guessasma
Weihong Zhang
Jihong Zhu
2017 год
Local mechanical behavior mapping of a biopolymer blend using nanoindentation, finite element computation, and simplex optimization strategy
статья из журнала
Страница публикации
Публикация в OpenAlex
Аннотация:
ABSTRACT In this study, we suggest a simple scheme to derive interfacial behavior using combination of nanoindentation and finite element computation. The starting point is the experimental generation of a rectangular grid composed of 32 indentations to measure the exact variation of stiffness across the interface of a bio‐based composite. A finite element simulation of nanoindentation is implemented based on elasto‐plastic material model. An optimization strategy is used to identify the behavior of all phases by matching predicted results to observed mechanical response. Results show that extent of interphase layer has a typical dimension of 8.0 ± 4.9 µm. The optimization strategy based on simplex proves to be efficient to derive the elasto‐plastic behavior of the blend across the interface with a residual value of less than 30 µN. The identification procedure demonstrates that the extent of the interfacial region depends on the measured physical quantity. The contrast across the interface for both Young's and the tangent moduli appear to be more effective than the contrast given by the yield stress. Identified Young's moduli for zein, starch, and interfacial zone are 4.78 ± 0.27, 4.13 ± 0.19, and 3.91 ± 0.17 GPa. Plasticity parameter represented by tangent modulus varies in the same order as 1238 ± 120, 847 ± 108, and 976 ± 94 MPa, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44891.
Год издания:
2017
Авторы:
Sofiane Guessasma
,
Weihong Zhang
,
Jihong Zhu
Издательство:
Wiley
Источник:
Journal of Applied Polymer Science
Ключевые слова:
Adhesion, Friction, and Surface Interactions, Tribology and Wear Analysis, Metal and Thin Film Mechanics
Другие ссылки:
Journal of Applied Polymer Science
(HTML)
HAL (Le Centre pour la Communication Scientifique Directe)
(HTML)
Показать дополнительные сведения
DOI:
https://doi.org/10.1002/app.44891
Открытый доступ:
closed
Том:
134
Выпуск:
24