Перейти к основному содержанию
Библиотечно-издательский комплекс СФУ
Toggle navigation
Ресурсы
Библиотечный поиск
Каталог изданий университета
Университетские информационные ресурсы
Российские информационные ресурсы
Мировые информационные ресурсы
Периодические издания
Тематические путеводители
Книгообеспеченность учебного процесса
Приобретение литературы
Читателю
Регистрация читателей
Получение и возврат литературы
Межбиблиотечный абонемент
Тематические путеводители
Обучение работе с ресурсами
Доступная среда библиотеки
Детская развивающая площадка
Подарить книгу библиотеке
Автору
Правила издания рукописей
План выпуска изданий
Размещение публикаций в библиотеке, репозитории, РИНЦ
Проверка
журнала
Служба поддержки публикационной
активности
Учёт публикаций в АИС
«Прометей»
Услуги
Справочник услуг и сервисов БИК
Новая заявка на услугу
Бронирование помещений
Контакты
Адреса и режим работы
Контакты
Вопрос-Ответ
Отправить отзыв
Ещё
О Научной библиотеке
Об Издательстве
Дилерство «САБ ИРБИС»
Красноярский ИРБИС-клуб
Литературный клуб «Высокий берег»
Подкаст «Пища для ума»
Вакансии
Часто задаваемые вопросы
Мобильное приложение
Карта сайта и поиск по сайту
Онлайн-медиа Научной библиотеки
Личный кабинет
Главная
Ресурсы
Библиотечный поиск
System Reliability
Optimization Using
Gray Wolf Optimizer
Algorithm
Anuj Kumar
Sangeeta Pant
Mangey Ram
2016 год
System Reliability Optimization Using Gray Wolf Optimizer Algorithm
статья из журнала
Страница публикации
Публикация в OpenAlex
Аннотация:
For the past two decades, nature‐inspired optimization algorithms have gained enormous popularity among the researchers. On the other hand, complex system reliability optimization problems, which are nonlinear programming problems in nature, are proved to be non‐deterministic polynomial‐time hard (NP‐hard) from a computational point of view. In this work, few complex reliability optimization problems are solved by using a very recent nature‐inspired metaheuristic called gray wolf optimizer (GWO) algorithm. GWO mimics the chasing, hunting, and the hierarchal behavior of gray wolves. The results obtained by GWO are compared with those of some recent and popular metaheuristic such as the cuckoo search algorithm, particle swarm optimization, ant colony optimization, and simulated annealing. This comparative study shows that the results obtained by GWO are either superior or competitive to the results that have been obtained by these well‐known metaheuristic mentioned earlier. Copyright © 2016 John Wiley & Sons, Ltd.
Год издания:
2016
Авторы:
Anuj Kumar
,
Sangeeta Pant
,
Mangey Ram
Издательство:
Wiley
Источник:
Quality and Reliability Engineering International
Ключевые слова:
Metaheuristic Optimization Algorithms Research, Reliability and Maintenance Optimization, Advanced Multi-Objective Optimization Algorithms
Показать дополнительные сведения
DOI:
https://doi.org/10.1002/qre.2107
Открытый доступ:
closed
Том:
33
Выпуск:
7
Страницы:
1327–1335