Перейти к основному содержанию
Библиотечно-издательский комплекс СФУ
Toggle navigation
Ресурсы
Библиотечный поиск
Каталог изданий университета
Университетские информационные ресурсы
Российские информационные ресурсы
Мировые информационные ресурсы
Периодические издания
Тематические путеводители
Книгообеспеченность учебного процесса
Приобретение литературы
Читателю
Регистрация читателей
Получение и возврат литературы
Межбиблиотечный абонемент
Тематические путеводители
Обучение работе с ресурсами
Доступная среда библиотеки
Детская развивающая площадка
Подарить книгу библиотеке
Автору
Правила издания рукописей
План выпуска изданий
Размещение публикаций в библиотеке, репозитории, РИНЦ
Проверка
журнала
Служба поддержки публикационной
активности
Учёт публикаций в АИС
«Прометей»
Услуги
Справочник услуг и сервисов БИК
Новая заявка на услугу
Бронирование помещений
Контакты
Адреса и режим работы
Контакты
Вопрос-Ответ
Отправить отзыв
Ещё
О Научной библиотеке
Об Издательстве
Дилерство «САБ ИРБИС»
Красноярский ИРБИС-клуб
Литературный клуб «Высокий берег»
Подкаст «Пища для ума»
Вакансии
Часто задаваемые вопросы
Мобильное приложение
Карта сайта и поиск по сайту
Онлайн-медиа Научной библиотеки
Личный кабинет
Главная
Ресурсы
Библиотечный поиск
Metabolic engineering
of Escherichia coli
W3110 to produce
L‐malate
Xiaoxiang Dong
Xiulai Chen
Yuanyuan Qian
2016 год
Metabolic engineering of
Escherichia coli
W3110 to produce L‐malate
статья из журнала
Страница публикации
Публикация в OpenAlex
Аннотация:
A four-carbon dicarboxylic acid L-malate has recently attracted attention due to its potential applications in the fields of medicine and agriculture. In this study, Escherichia coli W3110 was engineered and optimized for L-malate production via one-step L-malate synthesis pathway. First, deletion of the genes encoding lactate dehydrogenase (ldhA), pyruvate oxidase (poxB), pyruvate formate lyase (pflB), phosphotransacetylase (pta), and acetate kinase A (ackA) in pta-ackA pathway led to accumulate 20.9 g/L pyruvate. Then, overexpression of NADP+ -dependent malic enzyme C490S mutant in this multi-deletion mutant resulted in the direct conversion of pyruvate into L-malate (3.62 g/L). Next, deletion of the genes responsible for succinate biosynthesis further enhanced L-malate production up to 7.78 g/L. Finally, L-malate production was elevated to 21.65 g/L with the L-malate yield to 0.36 g/g in a 5 L bioreactor by overexpressing the pos5 gene encoding NADH kinase in the engineered E. coli F0931 strain. This study demonstrates the potential utility of one-step pathway for efficient L-malate production. Biotechnol. Bioeng. 2017;114: 656-664. © 2016 Wiley Periodicals, Inc.
Год издания:
2016
Авторы:
Xiaoxiang Dong
,
Xiulai Chen
,
Yuanyuan Qian
,
Yuancai Wang
,
Li Wang
,
Weihua Qiao
,
Li Liu
Издательство:
Wiley
Источник:
Biotechnology and Bioengineering
Ключевые слова:
Microbial Metabolic Engineering and Bioproduction, Enzyme Structure and Function, Bacterial Genetics and Biotechnology
Другие ссылки:
Biotechnology and Bioengineering
(HTML)
PubMed
(HTML)
Показать дополнительные сведения
DOI:
https://doi.org/10.1002/bit.26190
Открытый доступ:
closed
Том:
114
Выпуск:
3
Страницы:
656–664