Аннотация:This paper proposes an integrated design of fault-tolerant control (FTC) for nonlinear systems using Takagi-Sugeno (T-S) fuzzy models in the presence of modeling uncertainty along with actuator/sensor faults and external disturbance. An augmented state unknown input observer is proposed to estimate the faults and system states simultaneously, and using the estimates, an FTC controller is developed to ensure robust stability of the closed-loop system. The main challenge arises from the bidirectional robustness interactions, since the fault estimation (FE) and FTC functions have an uncertain effect on each other. The proposed strategy uses a single-step linear matrix inequality formulation to integrate together the designs of FE and FTC functions to satisfy the required robustness. The integrated strategy is demonstrated to be effective through a tutorial example of an inverted pendulum system (based on robust T-S fuzzy designs).