Аннотация:A/B testing, also known as bucket testing, split testing, or controlled experiment, is a standard way to evaluate user engagement or satisfaction from a new service, feature, or product. It is widely used in online websites, including social network sites such as Facebook, LinkedIn, and Twitter to make data-driven decisions. The goal of A/B testing is to estimate the treatment effect of a new change, which becomes intricate when users are interacting, i.e., the treatment effect of a user may spill over to other users via underlying social connections.When conducting these online controlled experiments, it is a common practice to make the Stable Unit Treatment Value Assumption (SUTVA) that each individual's response is affected by their own treatment only. Though this assumption simplifies the estimation of treatment effect, it does not hold when network interference is present, and may even lead to wrong conclusion.