Аннотация:Pseudomonas syringae pv. actinidiae ( P sa) is a G ram‐negative bacterium that causes the bacterial canker of both green ( A ctinidia deliciosa ) and yellow ( A ctinidia chinensis ) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in I taly, S outh K orea, S pain, N ew Z ealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global P sa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against P sa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against P sa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.