Аннотация:Much of our present understanding about the mechanisms contributing to the activity-dependent refinement of sensory connections comes from experiments done in the retinogeniculate pathway. In recent years the mouse has emerged as a model system of study. This review outlines the major changes in connectivity that occur in this species and a potential mechanism that can account for such remodelling. During early postnatal life when spontaneous activity of retinal ganglion cells sweeps across the retina in waves, retinal projections from the two eyes to the dorsal lateral geniculate nucleus (LGN) segregate to form non-overlapping eye-specific domains. There is a loss of binocular innervation, a pruning of excitatory inputs from a dozen or more to one or two, and the emergence of inhibitory circuitry. Many of these changes underlie the development of precise eye-specific visual maps and receptive field structure of LGN neurons. Retinal activity plays a major role both in the induction and maintenance of this refinement. The activity-dependent influx of Ca(2+) through L-type channels and associated activation of CREB signalling may underlie the pruning and stabilization of developing retinogeniculate connections.