Designing optimal greenhouse gas observing networks that consider performance and costстатья из журнала
Аннотация: Abstract. Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototype network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.
Год издания: 2015
Авторы: D. D. Lucas, Camille Yver‐Kwok, Philip Cameron‐Smith, Heather Graven, Dan Bergmann, T. P. Guilderson, Ray F. Weiss, Ralph F. Keeling
Издательство: Copernicus Publications
Источник: Geoscientific instrumentation, methods and data systems
Ключевые слова: Atmospheric and Environmental Gas Dynamics, Atmospheric chemistry and aerosols, Air Quality Monitoring and Forecasting
Другие ссылки: Geoscientific instrumentation, methods and data systems (PDF)
Geoscientific instrumentation, methods and data systems (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
DOAJ (DOAJ: Directory of Open Access Journals) (HTML)
OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
spiral.imperial.ac.uk (PDF)
hdl.handle.net (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
Geoscientific instrumentation, methods and data systems (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (PDF)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
DOAJ (DOAJ: Directory of Open Access Journals) (HTML)
OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
spiral.imperial.ac.uk (PDF)
hdl.handle.net (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
HAL (Le Centre pour la Communication Scientifique Directe) (HTML)
Открытый доступ: gold
Том: 4
Выпуск: 1
Страницы: 121–137