Перейти к основному содержанию
Библиотечно-издательский комплекс СФУ
Toggle navigation
Ресурсы
Библиотечный поиск
Каталог изданий университета
Университетские информационные ресурсы
Российские информационные ресурсы
Мировые информационные ресурсы
Периодические издания
Тематические путеводители
Книгообеспеченность учебного процесса
Приобретение литературы
Читателю
Регистрация читателей
Получение и возврат литературы
Межбиблиотечный абонемент
Тематические путеводители
Обучение работе с ресурсами
Доступная среда библиотеки
Детская развивающая площадка
Подарить книгу библиотеке
Автору
Правила издания рукописей
План выпуска изданий
Размещение публикаций в библиотеке, репозитории, РИНЦ
Проверка
журнала
Служба поддержки публикационной
активности
Учёт публикаций в АИС
«Прометей»
Услуги
Справочник услуг и сервисов БИК
Новая заявка на услугу
Бронирование помещений
Контакты
Адреса и режим работы
Контакты
Вопрос-Ответ
Отправить отзыв
Ещё
О Научной библиотеке
Об Издательстве
Дилерство «САБ ИРБИС»
Красноярский ИРБИС-клуб
Литературный клуб «Высокий берег»
Подкаст «Пища для ума»
Вакансии
Часто задаваемые вопросы
Мобильное приложение
Карта сайта и поиск по сайту
Онлайн-медиа Научной библиотеки
Личный кабинет
Главная
Ресурсы
Библиотечный поиск
PhaseLift: Exact and
Stable Signal
Recovery from
Magnitude
Measurements via
Convex Programming
Emmanuel J. Candès
Thomas Strohmer
Vladislav Voroninski
2012 год
PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming
статья из журнала
Полный текст
Страница публикации
Публикация в OpenAlex
Аннотация:
Abstract Suppose we wish to recover a signal \input amssym $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} {\bi x} \in {\Bbb C}^n$ from m intensity measurements of the form $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} |\langle \bi x,\bi z_i \rangle|^2$ , $i = 1, 2, \ldots, m$ ; that is, from data in which phase information is missing. We prove that if the vectors $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}}{\bi z}_i$ are sampled independently and uniformly at random on the unit sphere, then the signal x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite program–‐a trace‐norm minimization problem; this holds with large probability provided that m is on the order of $n {\log n}$ , and without any assumption about the signal whatsoever. This novel result demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by convex programming techniques. Finally, we also prove that our methodology is robust vis‐à‐vis additive noise. © 2012 Wiley Periodicals, Inc.
Год издания:
2012
Авторы:
Emmanuel J. Candès
,
Thomas Strohmer
,
Vladislav Voroninski
Издательство:
Wiley
Источник:
Communications on Pure and Applied Mathematics
Ключевые слова:
Advanced X-ray Imaging Techniques, Optical measurement and interference techniques, Sparse and Compressive Sensing Techniques
Другие ссылки:
Communications on Pure and Applied Mathematics
(HTML)
arXiv (Cornell University)
(PDF)
arXiv (Cornell University)
(HTML)
arXiv (Cornell University)
(PDF)
arXiv (Cornell University)
(HTML)
Показать дополнительные сведения
DOI:
https://doi.org/10.1002/cpa.21432
Открытый доступ:
green
Том:
66
Выпуск:
8
Страницы:
1241–1274