Аннотация:We present a nonempirical density functional generalized gradient approximation (GGA) that gives significant improvements for lattice constants, crystal structures, and metal surface energies over the most popular Perdew-Burke-Ernzerhof (PBE) GGA. The functional is based on a diffuse radial cutoff for the exchange hole in real space, and the analytic gradient expansion of the exchange energy for small gradients. There are no adjustable parameters, the constraining conditions of PBE are maintained, and the functional is easily implemented in existing codes.