Аннотация:Knowledge of arsenic redox kinetics is crucial for understanding the impact and fate of As in the environment and for optimizing As removal from drinking water. Rapid oxidation of As(III) adsorbed to ferrihydrite (FH) in the presence of hydrogen peroxide (H2O2) might be expected for two reasons. First, the adsorbed As(III) is assumed to be oxidized more readily than the undissociated species in solution. Second, catalyzed decomposition of H2O2 on the FH surface might also lead to As(III) oxidation. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor the oxidation of adsorbed As(III) on the FH surface in situ. No As(III) oxidation within minutes to hours was observed prior to H2O2 addition. Initial pseudo-first-order oxidation rate coefficients for adsorbed As(III), determined at H2O2 concentrations between 8.4 μM and 8.4 mM and pH values from 4 to 8, increased with the H2O2 concentration according to the equation log kox (min-1) = 0.17 + 0.50 log [H2O2] (mol/L), n = 21, r2 = 0.87. Only a weak pH dependence of log kox was observed (∼0.04 logarithm unit increase per pH unit). ATR-FTIR experiments with As(III) adsorbed onto amorphous aluminum hydroxide showed that Fe was necessary to induce As(III) oxidation by catalytic H2O2 decomposition. Supplementary As(III) oxidation experiments in FH suspensions qualitatively confirmed the findings from the in situ ATR-FTIR experiments. Our results indicate that the catalyzed oxidation of As(III) by H2O2 on the surface of iron (hydr)oxides might be a relevant reaction pathway in environmental systems such as surface waters, as well as in engineered systems for As removal from water.