Аннотация:Text summarization is one of the oldest problems in natural language processing. Popular approaches rely on extracting relevant sentences from the original documents. As a side effect, sentences that are too long but partly relevant are doomed to either not appear in the final summary, or prevent inclusion of other relevant sentences. Sentence compression is a recent framework that aims to select the shortest subsequence of words that yields an informative and grammatical sentence. This work proposes a one-step approach for document summarization that jointly performs sentence extraction and compression by solving an integer linear program. We report favorable experimental results on newswire data.