Аннотация:New experimental data on the transport of Kr35+ inner-shells initially populated either by capture or by excitation processes are presented. Absolute Lyman (np → 1s) intensities, directly related to the np state populations, as well as 3lj substate populations have been determined over a range of carbon target thickness allowing to study the transport from single collision conditions to equilibrium. Results are compared with predictions of different transport simulations which take into account multiple collisions, the strong target polarization induced by the incoming HCI (the wake field), and radiative decay. Very good agreement is found between theory and experiment for the np populations up to n = 5 where induced wake mixing becomes visible. The simulations also explain the behavior of the 3lj populations of Kr35+ which exhibit a strong sensitivity to the presence of radiative decay during transport and the effective value of the wake field.