Аннотация:To understand the heterogeneity of gamma-aminobutyric acid type B receptor (GABABR)-mediated events, we investigated expression of GABABR1a and 1b mRNA variants in GABA and non-GABAergic neurons of the rat central nervous system (CNS), by using nonradioactive in situ hybridization histochemistry and, in combination with GABA immunocytochemistry, double labeling. In situ hybridization with a pan probe, which recognizes a common sequence of both GABABR1a and GABABR1b mRNA variants, demonstrated widespread expression of GABABR1 mRNA at various levels in the CNS. Both GABABR1a and GABABR1b were expressed in the neocortex, hippocampus, dorsal thalamus, habenula, and septum, but only GABABR1a was detected in cerebellar granule cells, in caudate putamen, and most hindbrain structures. A majority of GABA neurons in cerebral cortex showed hybridization signals for both GABABR1a and GABABR1b, whereas those in most subcortical structures expressed either or neither of the two. GABA neurons in thalamic reticular nucleus and caudate putamen hybridized primarily for GABABR1a. Purkinje cells in the cerebellar cortex expressed predominantly GABABR1b. GABA neurons in dorsal lateral geniculate nucleus did not display significant levels of either GABABR1a or GABABR1b mRNAs. These data suggested widespread availability of GABABR-mediated inhibition in the CNS. The differential but overlapping expression of GABABR1 mRNA variants in different neurons and brain structures may contribute to the heterogeneity of GABABR-mediated inhibition. Some GABA neurons possessed, but others might lack the molecular machinery for GABABR-mediated disinhibition, autoinhibition, or both.