Insertion of the Polytopic Membrane Protein MalF Is Dependent on the Bacterial Secretion Machineryстатья из журнала
Аннотация: We examined the dependence of protein export and membrane protein insertion on SecE and SecA, two components of the secretion (Sec) apparatus of Escherichia coli. The magnitude of the secretion defect observed for signal sequence-containing proteins in cells depleted of SecE is larger and more general than that in many temperature- or cold-sensitive Sec mutants. In addition, we show that the proper insertion of the polytopic MalF protein (synthesized without a signal sequence) into the cytoplasmic membrane is also SecE-dependent. In contrast to an earlier study (McGovern, K., and Beckwith, J.(1991) J. Biol. Chem. 266, 20870-20876), the membrane insertion of MalF also is inhibited by treatment of cells with sodium azide, a potent inhibitor of SecA. Therefore, our data strongly suggest that the cytoplasmic membrane insertion of MalF is dependent on the same cellular machinery as is involved in the export of signal sequence-containing proteins. We propose that the mechanism of export from the cytoplasm is related for both signal sequence-containing and cytoplasmic membrane proteins, but hydrophobic membrane proteins such as MalF may have a higher affinity for the Sec apparatus. We examined the dependence of protein export and membrane protein insertion on SecE and SecA, two components of the secretion (Sec) apparatus of Escherichia coli. The magnitude of the secretion defect observed for signal sequence-containing proteins in cells depleted of SecE is larger and more general than that in many temperature- or cold-sensitive Sec mutants. In addition, we show that the proper insertion of the polytopic MalF protein (synthesized without a signal sequence) into the cytoplasmic membrane is also SecE-dependent. In contrast to an earlier study (McGovern, K., and Beckwith, J.(1991) J. Biol. Chem. 266, 20870-20876), the membrane insertion of MalF also is inhibited by treatment of cells with sodium azide, a potent inhibitor of SecA. Therefore, our data strongly suggest that the cytoplasmic membrane insertion of MalF is dependent on the same cellular machinery as is involved in the export of signal sequence-containing proteins. We propose that the mechanism of export from the cytoplasm is related for both signal sequence-containing and cytoplasmic membrane proteins, but hydrophobic membrane proteins such as MalF may have a higher affinity for the Sec apparatus.
Год издания: 1996
Авторы: Beth Traxler, Chris K. Murphy
Издательство: Elsevier BV
Источник: Journal of Biological Chemistry
Ключевые слова: Bacterial Genetics and Biotechnology, Vibrio bacteria research studies, Escherichia coli research studies
Другие ссылки: Journal of Biological Chemistry (PDF)
Journal of Biological Chemistry (HTML)
PubMed (HTML)
Journal of Biological Chemistry (HTML)
PubMed (HTML)
Открытый доступ: hybrid
Том: 271
Выпуск: 21
Страницы: 12394–12400