Аннотация:Development of a simple method for incorporating phospholipids onto the surfaces of anisotropic silver nanorods as a stepping-stone for creating responsive and multifunctional nanocomposites. 1, 2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC)-silver nanorod composites were prepared by immobilizing liposomes onto the surface of cetyltrimethylammonium bromide (CTAB) capped silver nanorods. Here we report the role of phospholipids to control the self assembly of silver nanorods into agglomerate architectures ranging from open "end-to-end" networks to densely packed "side-to-side" arrays. The tuning of electrostatic interactions within the phospholipid layers is governed to lipid silver nanorod assembly and also about the organization of phospholipid layers themselves around nanorod surfaces. The initial studies on passive lipid functionalized nanorods could serve as the groundwork for introducing active components into these systems to make more switchable or reconfigurable nanocomposite material. Changing the surface species on silver nanorods from CTAB to DSPC is reflected in ξ- potential measurements. The surface morphology is studied using SEM and TEM. The optical studies are carried out using UV-Vis spectroscopy.