УДК 517.55

КОНТУР КОМПАКТИФИЦИРОВАННОЙ АМЕБЫ ГИПЕРПЛОСКОСТИ

К.В. Кузвесов

Исследуется строение контура компактифицированной амебы комплексной гиперплоскости.

Понятие амебы для алгебраической гиперповерхности было введено в книге [1].

Определение. Амебой A_V алгебраического (или аналитического) множества $V \subset (C \setminus \{0\})^n$ называется образ V при логарифмическом отображении $Log: (C \setminus \{0\})^n \to \mathbb{R}^n$, действующем по формуле

$$(z_1, \dots, z_n) \mapsto (\log |z_1|, \dots, \log |z_n|).$$

Определение [2]. Контуром амебы A_V называется множество критических значений логарифмического отображения *Log*, суженного на V:

$$Log: V \to \mathbb{R}^n$$

В случае, когда $V = \{z \in (C \setminus \{0\})^n : f(z) = 0\}$ – гиперповерхность, точка $p \in V$ является критической для отображения $Log|_V$ тогда и только тогда, когда ее образ при логарифмическом отображении Гаусса $\gamma: C^n \to CP_{n-1}$

$$(z_1,\ldots,z_n)\mapsto \left(z_1\frac{\partial f}{\partial z_1}:\ldots:z_n\frac{\partial f}{\partial z_n}\right)$$

лежит в действительном проективном подпространстве $RP_{n-1} \subset CP_{n-1}$ ([3], [4]). Таким образом, контур амебы A_V есть множество $Log(\gamma^{-1}(RP_{n-1}))$. Нетрудно видеть, что граница амебы лежит в контуре: $\partial A_V \subseteq C$. Границу ∂A_V мы будем называть *внешней* частью контура, остальные точки контура – *внутренней* его частью.

Вместо обычных амеб иногда бывает удобно рассматривать компактифицированные амебы.

Определение [5]. Компактифицированной амебой A_V проективного алгебраического многообразия $\overline{V} \subset CP_n$, заданного в однородных координатах $(Z_0 : ... : Z_n)$, называется образ этого многообразия при моментном отображении $\mu: CP_n \to \Sigma_n$

$$(Z_0:\ldots:Z_n)\mapsto \frac{(Z_0|,\ldots,|Z_n|)}{|Z_0|+\cdots+|Z_n|}$$

в стандартный симплекс $\Sigma_n = \{ t \in \mathbb{R}^{n+1} : t_j \ge 0, t_0 + \dots + t_n = 1 \}.$

Замечание. Проективное пространство CP_n представляет собой объединение комплексного тора $(C \setminus \{0\})^n$ и (n+1) гиперплоскостей $\{Z_j = 0\}, j = 0, ..., n$. Поскольку обычная амеба A_V соответствует лишь точкам комплексного тора $(C \setminus \{0\})^n$, компактифицированная амеба $\overline{A_V}$ соответствует обычной амебе с присоединенными (n+1) компактифицированными амебами для гиперповерхностей $V_j = V \cap \{Z_j = 0\}$ размерности (n-1).

Определение. *Контуром компактифицированной амебы* назовем образ множества критических точек проекции $Log|_{V}$ при моментном отображении μ .

Пример 1. Амеба комплексной прямой $z_1 + z_2 + 1 = 0$ изображена на рис. 1 справа. Контур этой амебы кроме границы ∂A_V других точек не содержит. На рис. 1 слева комплексная прямая изображена на диаграмме Рейнхарта, где осями служат $|z_1|, |z_2|$. Компактифицированная амеба комплексной прямой изображена на рис. 2 в виде затемненного треугольника.

^{* ©} К.В.Кузвесов, Красноярский государственный университет, 2006.

Рис. 1. Диаграмма Рейнхарта и амеба комплексной прямой $z_1 + z_2 + 1 = 0$

Рис. 2. Компактифицированная амеба комплексной прямой $z_1 + z_2 + 1 = 0$

Пример 2. Амеба дискриминанта $\Delta(z_1, z_2)$ уравнения $y^3 + z_2 y^2 + z_1 y - 1 = 0$ изображена на рис. 3. В отличие от амебы комплексной прямой, контур этой амебы содержит *внутреннюю* часть – часть каспидальной кривой ("клюва"), расположенную внутри амебы.

Рис. 3. Амеба дискриминанта $\Delta(z_1, z_2) = 27 - 4z_2^3 + 4z_1^3 + 18z_1z_2 - z_1^2z_2^2$

Теорема. Компактифицированная амеба $\overline{A_V}$ гиперплоскости $V = \{z \in (C \setminus \{0\})^n : f = b_0 + b_1 z_1 + \dots + b_n z_n = 0\}$, все $b_j \neq 0$, есть п-мерный многогранник в симплексе Σ_n с 2(n+1) гипергранями, заданный условиями

$$t_j \ge 0, \quad \sum_{l=0}^{n} t_l = 1, \quad \beta_j t_j \le \sum_{k \ne j} \beta_k t_k, \quad j = 0, \dots, n,$$
 (1)

где $\beta_j = |b_j|$. Внешняя часть контура амебы (т.е. лежащая на границе $\partial \overline{A_V}$) состоит из n+1 симплициальных граней $\overline{A_V}$:

$$\left\{t \in \Sigma_n : \beta_j t_j = \sum_{k \neq j} \beta_k t_k\right\}, \quad j = 0, \dots, n,$$

а внутренняя часть – из $2^{n} - (n+2)$ многогранников вида

$$\left\{t\in \Sigma_n: \ \sum_{k\in I}\beta_kt_k=\sum_{l\notin I}\beta_lt_l\right\}, \quad I\subset \{0,\ldots,n\}, \quad 2\leq \#I\leq n-1.$$

Замечание. Как уже отмечалось, в случае n = 2 внутренняя часть контура компактифицированной амебы пуста. При n = 3 компактифицированная амеба гиперплоскости $z_1 + z_2 + z_3 + 1 = 0$ (в C^3) изображается в виде октаэдра (рис. 4, справа).

Рис. 4. Внутренняя и внешняя части контура компактифицированной амебы комплексной гиперплоскости $z_1 + z_2 + z_3 + 1 = 0$

Серым цветом на рисунке выделена внешняя часть контура амебы, состоящая из n + 1 = 4 граней октаздра; остальные $2^n - 1 - (n+1) = 3$ внутренние части контура представляют собой параллелограммы, разбивающие октаздр на две четырехугольные пирамиды (рис. 4, слева). В соответствии с замечанием к определению компактифицированной амебы, четыре незатемненные грани октаздра соответствуют амебам меньшей размерности и представляют собой треугольники (см. рис. 2).

Доказательство. Доказательство того, что компактифицированная амеба $\overline{A_V}$ представляет собой многогранник, заданный условиями (1), приводится в статье [5].

Для нахождения контура амебы необходимо решить систему уравнений

$$\begin{cases} f(z) = 0 \\ \frac{z_1 f_{z_1}}{s_1} = \dots = \frac{z_n f_{z_n}}{s_n} \end{cases},$$

принимающую в нашем случае вид

$$\begin{cases} b_0 + b_1 z_1 + \dots + b_n z_n = 0\\ \frac{b_1 z_1}{s_1} = \dots = \frac{b_n z_n}{s_n} \end{cases}$$

где $(s_1 : ... : s_n) \in RP_{n-1}$. Решение z(s) этой системы и есть множество критических точек логарифмического отображения $Log|_{V}$. Нетрудно видеть, что z(s) задается формулами.

$$b_j z_j = -b_0 \frac{s_j}{s_1 + \dots + s_n}, \quad j = 1, \dots, n.$$

Тогда контур $\overline{A_V}$, равный образу $\mu(z(s))$, задается параметризацией $s \to t$:

$$(t_0,\ldots,t_n) = \frac{\left(\frac{1}{\beta_0}, \frac{1}{\beta_1} \left| \frac{s_1}{s_1 + \dots + s_n} \right|, \cdots, \frac{1}{\beta_n} \left| \frac{s_n}{s_1 + \dots + s_n} \right|\right)}{\frac{1}{\beta_0} + \frac{1}{\beta_1} \left| \frac{s_1}{s_1 + \dots + s_n} \right| + \dots + \frac{1}{\beta_n} \left| \frac{s_n}{s_1 + \dots + s_n} \right|}.$$

Напомним, что $\beta_j = |b_j|$. Упрощая это выражение и обозначая $s_0 := s_1 + \dots + s_n$, получим

$$(t_0, \dots, t_n) = \frac{\left(\frac{|s_0|}{\beta_0}, \frac{|s_1|}{\beta_1}, \dots, \frac{|s_n|}{\beta_n}\right)}{\frac{|s_0|}{\beta_0} + \frac{|s_1|}{\beta_1} + \dots + \frac{|s_n|}{\beta_n}}.$$
(2)

Уравнения

$$s_0 = 0, s_1 = 0, \dots, s_n = 0 \tag{3}$$

разбивают пространство R^n параметров *s* на области знакопостоянства $s_0, s_1, ..., s_n$, в каждой из которых мы можем раскрыть модули в выражении (2). Выполняя это, мы получим уравнения для кусков контура амебы $\overline{A_V}$:

$$\varepsilon_0 \beta_0 t_0 = \sum_{j=1}^n \varepsilon_j \beta_j t_j, \quad \varepsilon_j = sign s_j.$$
(4)

Отметим, что каждый из указанных кусков контура плоский, так как задается линейным уравнением. Далее будет показано, что каждая такая часть представляет собой сечение амебы $\overline{A_V}$ плоскостью, проходящей через "вершинные точки" амебы.

Для подсчета числа кусков контура (в координатах t_j) и выяснения их местоположения в амебе $\overline{A_V}$ перейдем в параметризации (2) от однородных координат $s_1 :... : s_n$ проективного пространства RP_{n-1} к афинным координатам, полагая $s_n = 1$. Оставшиеся свободные параметры $s_1,...,s_{n-1}$ параметризуют все точки контура, кроме тех, что могут быть получены как предельные при $s_1,...,s_{n-1} \to \infty$.

Тогда плоскости

$$s_1 = 0, \dots, s_{n-1} = 0$$

разбивают пространство R^{n-1} на 2^{n-1} гипероктантов – областей знакопостоянства s_1, \ldots, s_{n-1} , а плоскость

$$s_0 = s_1 + \dots + s_{n-1} + 1 = 0$$

дополнительно разбивает каждый гипероктант R^{n-1} , кроме первого $\{s_1 > 0, ..., s_{n-1} > 0\}$, на две части (рис. 5).

Рис. 5. Параметризация контура амебы комплексной гиперплоскости для n = 3 и n = 4

Следовательно, всего имеется $2^n - 1$ областей знакопостоянства $s_0, s_1, ..., s_{n-1}$, соответствующих $2^n - 1$ плоским частям контура $\overline{A_V}$.

Внешним частям контура, лежащим на границе амебы $\overline{A_V}$, соответствуют следующие комбинации знаков s_1, \ldots, s_{n-1} и $s_1 + \cdots + s_{n-1} + 1$:

a) $s_1 > 0, \dots, s_{n-1} > 0 \implies s_1 + \dots + s_{n-1} + 1 > 0$.

В этом случае соответствующая часть в контуре (4) задается уравнением

$$\beta_0 t_0 = \sum_{j=1}^n \beta_j t_j ;$$

6) $s_1 < 0, \dots, s_{n-1} < 0, s_1 + \dots + s_{n-1} + 1 > 0$.

Перенося в (4) слагаемые $\beta_1 t_1, \dots, \beta_{n-1} t_{n-1}$ в левую часть, получим:

$$\beta_0 t_0 + \sum_{j=1}^{n-1} \beta_j t_j = \beta_n t_n;$$

B) $s_1 < 0, \dots, s_k < 0, \dots, s_{n-1} < 0, s_1 + \dots + s_{n-1} + 1 < 0$

Перенося слагаемое $\beta_0 t_0$ в правую часть, а $\beta_k t_k$ – в левую, получим:

$$\beta_k t_k = \sum_{j \neq k} \beta_j t_j.$$

В каждом из перечисленных случаев система (4) может быть приведена к виду

$$t \in \Sigma_n: \quad \beta_j t_j = \sum_{k \neq j} \beta_k t_k , \qquad (5)$$

соответствующему границе многогранника компактифицированной амебы $\overline{A_V}$. Всего имеется n+1 внешних частей контура. На рис. 5 эти части отмечены серым цветом; в правой части рисунка, соответствующей n = 4, серым отмечены лишь границы трехмерных областей параметризации.

Покажем, что все остальные комбинации знаков $s_0, s_1, \ldots, s_{n-1}$ соответствуют внутренним частям контура амебы $\overline{A_V}$, и эти части задаются в Σ_n уравнениями

$$\sum_{k \in I} \beta_k t_k = \sum_{l \notin I} \beta_l t_l, \quad I \subset \{0, \dots, n\}, \quad 2 \le \# I \le n - 1.$$
(6)

Рассматривая ненулевые значения t, соответствующие внутренней части Σ_n , мы получим для обеих сумм строгие неравенства вида:

$$t \in \operatorname{int} \Sigma_n$$
: $\beta_j t_j < \sum_{k \in I} \beta_k t_k = \sum_{l \notin I} \beta_l t_l$, $\forall j = 0 \dots n$.

Эта система всегда имеет решение, т.к. мы можем выбрать $t_k = t', k \in I$, $t_l = t'', l \notin I$, и подобрать такое λ , чтобы $t_k = \lambda t', t_l = \lambda t''$ лежали внутри Σ_n . Сопоставляя неравенства системы, с неравенствами (1), задающими амебу $\overline{A_V}$ в целом, легко видеть, что определяемые ими части контура действительно лежат *внутри* амебы.

Формально число уравнений вида (6) равно $\sum_{k=2}^{n-1} C_{n+1}^k$, но так как комплементарным наборам индексов Iи $I' = \{0, ..., n\} \setminus I$ соответствуют одинаковые уравнения, то общее число внутренних частей контура равно $\frac{1}{2} \sum_{k=2}^{n-1} C_{n+1}^k = 2^n - 1 - (n+1).$

Выясним строение внешних и внутренних частей контура. Для этого рассмотрим границу амебы $\overline{A_V}$. Как уже упоминалось, она задается уравнениями

$$t \in \Sigma_n : \quad \beta_j t_j = \sum_{k \neq j} \beta_k t_k, \quad j = 0, \dots, n .$$
(7)

Рассмотрим пересечение плоскостей (7) с ребрами симплекса Σ_n . Для этого положим все $t_j = 0$, кроме пары $t_k \neq 0$, $t_l \neq 0$. Тогда искомые точки пересечения будут задаваться уравнениями

$$\beta_j t_j = \beta_k t_k, \quad t_j + t_k = 1, \quad j = 0, \dots, n, \quad k = 0, \dots, n, \quad j \neq k \ .$$

Эти точки являются вершинными точками амебы $\overline{A_V}$, а сама амеба есть выпуклая линейная комбинация этих точек.

Для того чтобы выяснить, через какие вершинные точки $\overline{A_V}$ проходят плоские части контура амебы, подставим координаты этих точек в соответствующие уравнения (4). Иначе говоря, в этих уравнениях нам нужно занулить все t_i , кроме двух.

Рассматривая уравнения (4) в видах (5) и (6), обратим внимание, что все компоненты левой и правой сумм неотрицательны. Поэтому, оставляя ненулевыми два параметра t_j , мы обязательно должны один из них оставить в левой части, а другой – в правой.

Таким образом, внешние части (5) контура пересекают симплекс Σ_n в *n* вершинных точках амебы. Соответственно, каждая такая часть представляет собой симплекс, натянутый на *n* вершинных точек. Аналогично, внутренние части (6) контура при #I = k пересекают Σ_n в k(n+1-k) точках и также являются выпуклой комбинацией этих точек.

Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gelfand I., Kapranov M., Zelevinsky A. Discriminants, resultants and multidimensional determinants. Birkhäuser, Boston, 1994.
- 2. Passare M., Tsikh A. Amoebas: their spines and contours// Contemporary maths. V. 377 (2005). P. 275-288.
- 3. Mikhalkin G. Real algebraic curves, the moment map and amoebas// Ann. Math. V. 151 (2000). P. 309-326.
- 4. Theobald T. Computing amoebas// Experimental Math. V. 11 (2002). P. 513-526.
- Forsberg M., Passare M., Tsikh A. Laurent determinants and arrangements of hyperplane amoebas// Advances in mathematics. V. 151 (2000). P. 54–70.

THE CONTOUR OF COMPACTIFIED HYPERPLANE AMOEBA

K.V.Kuzvesov

In this paper the structure of compactified hyperplane amoeba contour is investigated.