Библиографическое описание:Kumar, Rahul. Machine Learning Quick Reference. Quick and Essential Machine Learning Hacks for Training Smart Data Models / Rahul Kumar. - Электрон. текстовые дан. - Birmingham : Packt Publishing Ltd, 2019. - 1 online resource (283 p.). - Загл. с титул. экрана. - ISBN 9781788831611. - ISBN 1788831616. - Текст : электронный. Description based upon print version of record. Importing the library Перевод заглавия: Краткий справочник по машинному обучению. Простые и незаменимые приемы машинного обучения для обучения интеллектуальным моделям данных Примечания о происхождении: Коллекция цифровых книг Ebsco ebook (централизованная подписка 2023 г., бессрочный доступ). НБ СФУ
Аннотация:Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more.
Машинное обучение включает в себя разработку и обучение моделям, используемым для прогнозирования будущих результатов. Эта книга представляет собой практическое руководство по всем советам и хитростям, связанным с машинным обучением. Она включает в себя практические, легкодоступные методы по таким темам, как выбор модели, настройка производительности, обучение нейронных сетей, анализ временных рядов и многое другое.
Ключевые слова:машинное обучение, интеллектуальные модели данных, нейронные сети, статистическое моделирование, модель Райта, ансамблевые методы, бутстрэппинг
Рубрики:Machine learning, COMPUTERS / General
Классификационные коды:УДК 006.31, ГРНТИ 28.23
ISBN:9781788831611
Идентификаторы:полочный индекс 006 M13, шифр /M13-488756943
Содержание
Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Quantifying Learning Algorithms; Statistical models; Learning curve; Machine learning; Wright's model; Curve fitting; Residual; Statistical modeling - the two cultures of Leo Breiman; Training data development data -- test data; Size of the training, development, and test set; Bias-variance trade off; Regularization; Ridge regression (L2); Least absolute shrinkage and selection operator ; Cross-validation and model selection; K-fold cross-validation
Model selection using cross-validation0.632 rule in bootstrapping; Model evaluation; Confusion matrix; Receiver operating characteristic curve; Area under ROC; H-measure; Dimensionality reduction; Summary; Chapter 2: Evaluating Kernel Learning; Introduction to vectors; Magnitude of the vector; Dot product; Linear separability; Hyperplanes ; SVM; Support vector; Kernel trick; Kernel; Back to Kernel trick; Kernel types; Linear kernel; Polynomial kernel; Gaussian kernel; SVM example and parameter optimization through grid search; Summary; Chapter 3: Performance in Ensemble Learning
What is ensemble learning?Ensemble methods ; Bootstrapping; Bagging; Decision tree; Tree splitting; Parameters of tree splitting; Random forest algorithm; Case study; Boosting; Gradient boosting; Parameters of gradient boosting; Summary; Chapter 4: Training Neural Networks; Neural networks; How a neural network works; Model initialization; Loss function; Optimization; Computation in neural networks; Calculation of activation for H1; Backward propagation; Activation function; Types of activation functions; Network initialization; Backpropagation; Overfitting; Prevention of overfitting in NNs
Vanishing gradient Overcoming vanishing gradient; Recurrent neural networks; Limitations of RNNs; Use case; Summary; Chapter 5: Time Series Analysis; Introduction to time series analysis; White noise; Detection of white noise in a series; Random walk; Autoregression; Autocorrelation; Stationarity; Detection of stationarity; AR model; Moving average model; Autoregressive integrated moving average; Optimization of parameters; AR model; ARIMA model; Anomaly detection; Summary; Chapter 6: Natural Language Processing; Text corpus; Sentences; Words; Bags of words; TF-IDF
Executing the count vectorizerExecuting TF-IDF in Python; Sentiment analysis; Sentiment classification; TF-IDF feature extraction; Count vectorizer bag of words feature extraction; Model building count vectorization; Topic modeling ; LDA architecture; Evaluating the model; Visualizing the LDA; The Naive Bayes technique in text classification; The Bayes theorem; How the Naive Bayes classifier works; Summary; Chapter 7: Temporal and Sequential Pattern Discovery; Association rules; Apriori algorithm; Finding association rules; Frequent pattern growth; Frequent pattern tree growth; Validation