КОМПЛЕКСНЫЙ АНАЛИЗ

УДК 517.55

АНАЛИТИЧЕСКОЕ ПРОДОЛЖЕНИЕ СЕПАРАТНО-АНАЛИТИЧЕСКИХ ФУНКЦИЙ

С.А.Имомкулов*

Пусть $D \subset \mathbb{C}^n$ — область с гладкой границей ∂D , $M \subset \partial D$ — порождающее k — мерное, $n \le k \le 2n-1$, многообразие класса C^1 и $E \subset M$ — множество положительной меры Лебега на M, $m_k(E) > 0$, а $F \subset G$ — неплюриполярный компакт в сильно псевдовыпуклой области $G \subset \mathbb{C}^m$. В этой работе доказано, что всякая сепаратно-аналитическая на множестве $X = ((D \cup E) \times F) \cup (E \times G)$ функция голоморфно продолжается в область

$$\widehat{X} = \{(z,w) \in D \times G: \omega_{in}^*(z,E,D) + \omega^*(w,F,G) < 1\} \;,$$
 где $\omega^* - P$ - мера, и ω_{in}^* – внутренняя P - мера.

Пусть даны две области $D \subset \mathbb{C}^n$, $G \subset \mathbb{C}^m$ и два множества $E \subset \overline{D}$, $F \subset \overline{G}$. Предположим, что функция f(z,w), первоначально определенная на множестве $E \times F$, обладает свойствами:

- а) для любого фиксированного $w^0 \in F$ функция $f(z, w^0)$ голоморфно продолжается в D;
- б) для любого фиксированного $z^0 \in E$ функция $f(z^0, w)$ голоморфно продолжается в G.

В таком случае f(z,w) определяет некоторую функцию на множестве $X = (D \cup E) \times F \cup (E \times (G \cup F))$ и она называется *сепаратно-аналитической функцией* на X.

Задача состоит в том, чтобы определить область \hat{X} ($X \subset \hat{X} \cup \partial \hat{X}$), куда функция f(z,w) голоморфно продолжается по совокупности переменных.

Впервые эта задача, когда $E \subset D$, $F \subset G$, была поставлена М.Хукухарой [1]. В одномерном случае n=m=1 поставленная задача решена Й.Сичаком [2], а в общем случае — В.П.Захарютой [4]: пусть $D \subset {\bf C}^n$ и $G \subset {\bf C}^m$ — сильно псевдовыпуклые области, а E и F — замкнутые подмножества, соответственно, в D и G. Если f(z,w) сепаратно-аналитическая функция на множестве

$$X = (D \times F) \cup (E \times G),$$

то она голоморфно продолжается в область

$$\widehat{X} = \left\{ (z, w) \in D \times G : \omega^*(z, E, D) + \omega^*(w, F, G) < 1 \right\}.$$

Здесь ω^* обозначает основную величину комплексной теории потенциала, так называемую P-меру множества $E \subset D \subset \mathbb{C}^n$ относительно области D (см.[5], [6]).

А. А. Гончаром [7] доказана следующая теорема, которая является граничным вариантом теоремы о сепаратно-аналитических функциях: пусть D и G – плоские жордановы области с гладкими границами и $E \subset \partial D$, $F \subset \partial G$ – граничные дуги. Если f(z,w) непрерывная и сепаратно-аналитическая на множестве $X = ((D \cup E) \times F) \cup (E \times (G \cup F))$ функция, то f(z,w) голоморфно продолжается в область

$$\widehat{X} = \{ (z, w) \in D \times G : \omega(z, E, D) + \omega(w, E, G) < 1 \},\$$

где ω - гармоническая мера.

*

^{* ©} С.А.Имомкулов, Ургенчский государственный университет (Узбекистан), 2006.

Доказательство этой теоремы опирается на интегральную формулу Карлемана [8] о восстановлении голоморфной функции по её значениям, заданным на части границы $E \subset \partial D$, и поэтому здесь существенно, чтобы области D и G были плоскими.

В 2002 году А.С. Садуллаев и С.А. Имомкулов совместно доказали следующий граничный вариант теоремы о сепаратно-аналитических функциях: пусть $D \subset C^n$ — область с гладкой границей $E \subset \partial D, F \subset \partial G$ — граничное подмножество положительной меры Лебега, mes(E) > 0, а $F \subset G$ — неплюриполярный компакт в сильно псевдовыпуклой области $G \subset C^m$. Предположим, что функция f(z,w), заданная на множестве $E \times F$, обладает следующими условиями сепаратной аналитичности (на $X = (D \times F) \cup (E \times G)$):

- а) для любого фиксированного $w^0 \in F$ функция $f(z,w^0)$ является сужением некоторой ограниченной голоморфной функции $\psi_{w^0}(z) \in O(D) \cap L^\infty(\overline{D})$, причем в каждой точке $\xi \in E$ угловой предел $\psi_{w^0}^*(\xi)$ существует и равен $f(\xi,w^0)$,
- б) для любого фиксированного $z^0 \in E$ функция $f(z^0,w)$, определенная на F является сужением некоторой голоморфной функции $\Phi_{z^0}(w) \in O(G)$: $\Phi_{z^0}(w) = f(z^0,w)$ для всех $w \in F$.

Тогда f(z, w) определяет некоторую сепаратно-аналитическую функцию на множестве X и голоморфно продолжается в область

$$\widehat{X} = \left\{ (z, w) \in D \times G : \omega_{in}^*(z, E, D) + \omega^*(w, F, G) < 1 \right\}.$$

Этот и другие результаты находятся в печати в Мичиганском математическом журнале. Частные случаи указанного результата опубликованы также в Узбекском математическом журнале [14].

В работе [9] П. Пфлуг и В. Нгуен, используя теорему А.А. Гончара, т.е. методом продолжений по двумерным сечениям, доказали следующий многомерный аналог самой теоремы А.А. Гончара: пусть $D \subset \mathbb{C}^n$, $G \subset \mathbb{C}^m$ — псевдовыпуклые области с C^2 - гладкими границами, E и F — открытие подмножества границы ∂D и ∂G соответственно и f(z,w) — непрерывная сепаратно-аналитическая на множестве $X = ((D \cup E) \times F) \cup (E \times (G \cup F))$ функция. Тогда f(z,w) голоморфно продолжается в область

$$\widehat{X} = \left\{ (z, w) \in D \times G : \omega^*(z, E, D) + \omega^*(w, F, G) < 1 \right\}$$

и является непрерывной функцией на множестве $\hat{X} \bigcup X$.

В этой работе мы докажем следующую теорему.

Теорема. Пусть $D \subset \mathbb{C}^n$ — область с гладкой границей ∂D , $M \subset \partial D$ — порождающее k — мерное, $n \leq k \leq 2n-1$, многообразие класса C^1 и $E \subset M$ — множество положительной меры Лебега на M, $m_k(E) > 0$, а $F \subset G$ — неплюриполярный компакт в сильно псевдовыпуклой области $G \subset \mathbb{C}^m$. Предположим, что функция f(z,w), заданная на множестве $E \times F$, обладает следующими условиями сепаратно - аналитичной (на $X = (D \cup E) \times F) \cup (E \times G)$):

- а) для любого фиксированного $w^0 \in F$ функция $f(z,w^0)$ является сужением некоторой ограниченной голоморфной функции $\psi_{w^0}(z) \in O(D) \cap L_{\infty}(\overline{D})$: в каждой точке $\xi \in E$ угловой предел $\psi_{w^0}^*(\xi)$ существует и равен $f(\xi,w^0)$,
- б) для любого фиксированного $z^0 \in E$ функция $f(z^0,w)$, определенная на F, является сужением некоторой голоморфной функции $\Phi_{z^0}(w) \in O(G)$: $\Phi_{z^0}(w) = f(z^0,w)$ для всех $w \in F$.

Тогда f(z,w) определяет некоторую сепаратно-аналитическую функцию на множестве X и голоморфно продолжается в область

$$\widehat{X} = \{ (z, w) \in D \times G : \omega_{in}^*(z, E, D) + \omega^*(w, F, G) < 1 \}.$$

Здесь O обозначает алгебру голоморфных функций и $\omega_{in}^*(z,E,D)$ — так называемая внутренняя P -мера граничного множества $E \subset \partial D$ (см. ниже §2).

Доказательство теоремы опирается на методы комплексной теории потенциала и подклеивание аналитических дисков к порождающему многообразию (см. [5], [6], [11], [12]). В следующих двух параграфах мы изложим вкратце суть этих методов.

§ 1. Порождающие многообразия и подклеивание аналитических дисков

Гладкое (класса C^1) многообразие $M \subset \mathbb{C}^n$ называется порождающим, если в каждой точке $z \in M$ комплексная линейная оболочка векторов касательного пространства $T_z(M)$ (к M в точке z) совпадает со всем пространством \mathbb{C}^n .

Следующая лемма позволяет нам рассматривать только порождающие многообразия размерности n.

Лемма 1 (см. [5]). Пусть M – порождающее k -мерное многообразие в \mathbb{C}^n , $E \subset M$ – подмножество положительной меры. Тогда существует n -мерное порождающее подмногообразие $M' \subset M$ такое, что $M' \cap E$ имеет положительную меру на M'.

Итак, можно считать, что $\dim_R M = n$ и, заменяя систему координат, мы можем в окрестности $0 \in M$ задать его в виде

$$M = \{z = x + iy : y = h(x)\},\$$

где $(x, y) \in \mathbf{R}^n \times \mathbf{R}^n \approx \mathbf{C}^n$ меняется в окрестности

$$\Omega = \Omega_1 \times \Omega_2 = \{x : |x| < \delta\} \times \{y : |y| < \delta\},\,$$

а $h = (h_1, h_2, ..., h_n)$ — вектор-функция, равная нулю при x = 0 вместе со своими первыми частными производными.

Изложим коротко метод подклеивания аналитических дисков.

Обозначим через Tu гармоническую сопряженную функцию к непрерывной функции u, заданной на границе ∂U единичного круга $U \subset \mathbb{C}$, причем для однозначности полагаем

$$\int_{0}^{2\pi} Tu(\zeta)d\zeta = 0 .$$

Рассмотрим на ∂U систему нелинейных сингулярных уравнений

$$\mathcal{G}(\zeta) = c - T(h \circ \mathcal{G})(\zeta) - tTu(\zeta), \qquad (1)$$

где $u=(u_1,u_2,...,u_n)$ — бесконечно гладкая вектор-функция, а $c,t\in\mathbf{R}^n$ — параметры. Если $\mathscr{G}(c,t,\zeta)$ — решение уравнения (1), то функция $\mathscr{G}(c,t,\zeta)+i((h\circ\mathscr{G})(c,t,\zeta)+tu(\zeta))$ является граничным значением голоморфной в U вектор-функции $\mathscr{O}(c,t,\zeta), \zeta\in U$, т.е. $\mathscr{O}(c,t,\zeta)\in O(U)$ и $\mathscr{O}(c,t,\zeta)=\mathscr{G}(c,t,\zeta)+i((h\circ\mathscr{G})(c,t,\zeta)+tu(\zeta))$ при $\zeta\in\partial U$. Если $u\equiv 0$ на дуге $\partial U^+=\{\zeta\in\partial U: \mathrm{Im}\,\zeta\geq 0\}$, то образ сужения функции $\mathscr{O}(c,t,\zeta)|_{\partial U^+}$ принадлежит M, т.е. $\mathscr{O}(c,t,\zeta)$ "подклеивает" диск $\Delta_{c,t}=\{\mathscr{O}(c,t,\zeta):\zeta\in U\}$ к M по дуге ∂U^+ .

В работе [11] Ю.В.Хурумовым доказано существование достаточно «плотного» семейства дисков, подклеенных к M. Результаты о подклеивании аналитических дисков более подробно изложены в работе [12].

Лемма 2 ([11], [12]). Пусть $D \subset \mathbb{C}^n$ — область с кусочно-гладкой границей, $M \subset \partial D$ — порождающее n -мерное многообразие класса C^1 , заданное в виде

$$M = \{z = x + iy \in \Omega = \Omega_1 \times \Omega_2 : y = h(x)\},$$

где $\Omega = \Omega_1 \times \Omega_2 = \{x: |x| < \delta\} \times \{y: |y| < \delta\}$ и $h = (h_1, h_2, ..., h_n)$ — вектор-функция, равная нулю при x = 0 вместе со своими первыми частными производными. Пусть $E \subset M$ — множество положительной меры Лебега на M, $m_n(E) > 0$, и z = 0 — точка плотности множества E. Тогда:

1) существует достаточно малое число $\theta > 0$ такое, что

$$\Phi \in C^1(\Pi_\theta \times U)$$
 и $\Phi \in \operatorname{W}^1_p(\Pi_\theta \times \partial U)$, $p \ge 1$,

где W_p^1 - класс Соболева, $\Pi_\theta = \{(c,t) \in \mathbf{R}^n \times \mathbf{R}^n : |c| < \theta, |t| < \theta\}$;

2) существуют компакт $E_1 \subset E$, семейство дисков

$$\Delta_{c,t} = \{ \Phi(c,t,\zeta), \zeta \in U \}, \ (c,t) \in \Pi_{\theta},$$

и множество $\mathit{Q} \subset \Pi_{\theta}$ положительной меры Лебега в \mathbf{R}^{2n} такие, что

$$m_1(\Phi^{-1}(\partial \Delta_{c,t} \cap E_1)) > 0$$

для любого $(c,t) \in Q$;

3) для любого $(c,t) \in Q$ существует область $W_{c,t} \subset U$ со спрямляемой границей такая, что

$$\Phi(c,t,W_{c,t}) = \mathbf{A}_{c,t} \subset \Omega_E \subset D$$
,

где Ω_E – клин с острием E и

$$m_1(\Phi^{-1}(\partial \mathbf{A}_{c,t} \cap E_1)) > 0;$$

- 4) $\Phi(c,t,\cdot) \in O(U) \cap W^1_p(\partial U) \subset O(W_{c,t}) \cap C(\overline{W}_{c,t})$, p > 1, для всех $(c,t) \in Q$;
- 5) множество $Z = \bigcup_{(c,t) \in \mathcal{Q}} \mathbf{A}_{c,t}$ имеет положительную меру в $\mathbf{C}^n \approx \mathbf{R}^{2n}$.

Из этой леммы легко следует, что множество $E \subset M$, положительной мерой Лебега на M, является множеством единственности в классе O(D).

§ 2. Р -мера граничных множеств

Пусть D — область с гладкой границей и u(z) — (плюри)субгармоническая в D функция. Доопределим функцию u(z) до границы области следующим образом:

$$\widetilde{u}(\xi) = \sup_{\alpha > 1} \overline{\lim_{z \to \xi} u(z)}, \quad \xi \in \partial D,$$

где $A_{\alpha}(\xi)$ представляет собой пересечение области D и конуса с вершиной в точке ξ :

$$A_{\alpha}(\xi) = \left\{ z \in D : \left| z - \xi \right| < \alpha \rho(z, T_{\xi}) \right\}.$$

Здесь $\xi \in \partial D$, $\alpha > 1$, $\rho(z, T_{\xi})$ — расстояние от точки z до касательной плоскости T_{ξ} к ∂D в точке ξ . Далее всюду в качестве граничного значения (плюри)субгармонической в D функции u(z) мы будем брать, не оговаривая это каждый раз, значение $\widetilde{u}(\xi)$, $\xi \in \partial D$.

P -мерой граничного множества $E \subset \partial D$ относительно области D называется плюрисубгармоническая в области D функция

$$\omega^*(z, E, D) = \overline{\lim_{\zeta \to z}} \omega(\zeta, E, D), \quad z \in D,$$

где

$$\omega(z, E, D) = \sup_{u \in psh(D)} u = \sup_{u \in psh(D)} u = 1, \ \widetilde{u}_{E} \le 0$$

Как и в случае $E \subset D$ (см.[6]), для граничных подмножеств $E \subset \partial D$ функция $\omega(z,E,D)$ либо тождественно равна 1, либо нигде в D не равна 1. В первом случае существует ограниченная сверху плюрисубгармоническая в D функция $u(z) \not\equiv -\infty$ такая, что $\widetilde{u}\big|_E = -\infty$, и поэтому такое множество E естественно назвать плюриполярным граничным множеством.

Заметим, что в одномерном случае (n=1) множества $E \subset \partial D$ положительной меры и только они неполярны, т.е. $\omega^*(z,E,D) \not\equiv 1, z \in D$, причем для них почти во всех точках $\xi \in E$ $\widetilde{\omega}^*(\xi,E,D) = 0$.

В многомерном случае множества $E \subset \partial D$ с положительной мерой Лебега на ∂D также обладают этими свойствами: $\omega^*(z, E, D) < 1$ в D и почти все точки E являются плюрирегулярными. Однако далеко не все подмножества $E \subset \partial D$ меры нуль плюриполярны. Тем не менее, в силу леммы 2, имеет место следующее

Предложение 1. Всякое множество $E \subset M \subset \partial D$ ($\partial D \in C^1, M \in C^1$) положительной меры Лебега на M, $m_k(E) > 0$, $n \le k \le 2n-1$, неплюриполярно.

Положим

$$\omega_{in}(z, E, D) = \sup \{ \lim_{j \to \infty} \omega^*(z, E_j, D) \},$$

где супремум берется по всем последовательностям $\{E_j\}$: $E_j \subset E_{j+1} \subset E$, $E = \bigcup_{j=1}^\infty E_j$. Тогда регуляризация $\omega_{in}^*(z,E,D)$ является плюрисубгармонической и называется внутренней P -мерой множества E. Ясно, что $\omega^*(z,E,D) \le \omega_{in}^*(z,E,D)$.

Используя топологическую лемму Шоке [13] и лемму 2, легко можно доказать следующие предложения. **Предложение 2**. Для всякого множество $E \subset M \subset \partial D$ с положительной мерой Лебега на M, $m_k(E) > 0, \ n \le k \le 2n-1$, внутренняя P- мера $\omega_{in}^*(z,E,D) < 1, \ \forall z \in D$.

§ 3. Доказательство теоремы

Доказательство проведем в несколько этапов.

1. Введем обозначение

$$F_N = \left\{ w \in F : \sup_{z \in D} \left| f(z, w) \right| \le N \right\}, \qquad N = 1, 2, \dots.$$

Тогда $F=\bigcup_{N=1}^{\infty}F_N$ и начиная с некоторого N_0 все F_N , $N\geq N_0$ будут неплюриполярными. Покажем, что $F_N\subset G$ — компакт и функция f(z,w) непрерывна на множестве $D\times F_N$. Фиксируем предельную для F_N точку $w^0\in F$ и положим $\varphi_w(z)=f(z,w)-f(z,w^0)$, $w\in F_N$. Тогда семейство $\left\{\varphi_w(z)\right\}_{w\in F_N}$ равномерно ограничено и, следовательно, равностепенно непрерывно в D. Граничные значения $\varphi_w^*(\xi)$, $\xi\in E$, существуют, и $\lim_{w\to w_0} \varphi_w^*(\xi)=0$, ибо при любом фиксированном $\xi\in E$, по условию теоремы, функция $f(\xi,w)\in O(G)$. Фиксируем ε , $0<\varepsilon<1$, и положим

$$E_k = \left\{ \xi \in E : \left| \varphi_w^*(\xi) \right| < \varepsilon, \ w \in F_N, \ \left| w - w^0 \right| < \frac{1}{k} \right\},$$

 $k=1,2,\dots$. Тогда $E_k\subset E_{k+1}$ и $\bigcup_{k=1}^\infty E_k=E$. Начиная с некоторого k_0 множества E_k , $k\geq k_0$, имеют положительную меру на M , т.е.

$$\omega^*(z, E_k, D) < 1, z \in D.$$

По теореме о двух константах имеем

$$|\varphi_w(z)| \le \operatorname{const} \varepsilon^{1-\omega^*(z, E_k, D)},$$
 (2)

$$k \ge k_0, z \in D, w \in F_N, |w - w_0| < \frac{1}{k}.$$

При фиксированном $z^0 \in D$ существует $k \ge k_0$ такой, что

$$\varepsilon^{1-\omega^*(z^0,E_k,D)} \leq 2 \cdot \varepsilon^{1-\omega_{in}^*(z^0,E,D)}$$

Поэтому для такого k из (2) получим

$$\left| \varphi_w(z^0) \right| \le 2 const \cdot \varepsilon^{1 - \omega_{in}^*(z^0, E, D)}, \ w \in F_N, \ \left| w - w^0 \right| < \frac{1}{k}.$$

Следовательно, для любого ε , $0<\varepsilon<1$, существует $\delta>0$ такое, что при $\left|w-w^0\right|<\delta$, $w\in F_N$ имеет место неравенство

$$\left| f(z^0, w) - f(z^0, w^0) \right| < \varepsilon$$
.

Отсюда, во-первых, вытекает, что $\left|f(z^0,w^0)\right| \leq N$, значит, так как $z^0 \in D$ произвольное, то $w^0 \in F_N$. И, во-вторых, вместе с равностепенной непрерывностью f(z,w) по z мы получим непрерывность f(z,w) в $D \times F_N$, ибо для любой фиксированной точки $(z^0,w^0) \in D \times F_N$ и для достаточно близких к (z^0,w^0) точек $(z,w) \in D \times F_N$ имеем

$$|f(z,w) - f(z^0,w^0)| \le |f(z,w) - f(z^0,w)| + |f(z^0,w) - f(z^0,w^0)| \le 2\varepsilon$$

 $\forall \varepsilon > 0$.

2. Пусть G' — строго псевдовыпуклая область такая, что $F \subset G' \subset G$. Рассматриваем следующие гильбертовы пространства $H_0 = \mathrm{W}_2^l(C^m) \cap O(G')$, l > m, (W_2^l -пространство Соболева) и H_1 как замыкание пространства O(G') относительно нормы

$$\|\varphi\|_{H_1} = \left(\int_{F_N} |\varphi(w)|^2 d\sigma\right)^{\frac{1}{2}},$$

где $d\sigma = \left(dd^c\omega^*(w, F_N, G')\right)^m$ — мера, сосредоточенная на F . Ясно, что H_0 плотно и вполне непрерывно вложено в H_1 . Поэтому существует общий ортогональный базис $\{h_k(w)\}_{k=1}^\infty$ в пространствах H_0, H_1 такой, что

$$||h_k||_{H_0} = \mu_k, ||h_k||_{H_1} = 1, k = 1,2,...,$$

 $\frac{1}{I} k^{\frac{1}{m}} \le \ln \mu_k \le L k^{\frac{1}{m}}, \quad L - \text{константа}, \ k = 1, 2, \dots . (\text{см.}[3], [10]) \ .$

Любой элемент $\varphi \in H_0$ разлагается в ряд

$$\varphi = \sum_{k=1}^{\infty} a_k h_k ,$$

где $a_k = (\varphi, h_k)_{H_0} \cdot \mu_k^{-2} = (\varphi, h_k)_{H_1}$. Приведем некоторые оценки для h_k , которые мы применяем ниже. Из непрерывного вложения

$$H_0 = \mathrm{W}_2^l(\mathbb{C}^m) \cap O(G') \subset O(G') \cap C(\overline{G'}) \,, \ l > m \,,$$

вытекает, что

$$||h_k||_{\overline{G'}} \le C \cdot ||h_k||_{H_0} = C\mu_k, \tag{3}$$

где $\lVert \cdot \rVert_{\overline{G'}}$ – равномерная норма, а C – константа, не зависящая от k .

Теперь рассмотрим множества $A_k = \{z \in F_N : |h_k(w)| > k\}$. Согласно неравенству Чебышева

$$\sigma(A_k) \le \frac{1}{k^2} \int_{F_N} |h_k(w)|^2 d\sigma = \frac{1}{k^2} ||h_k||_{H_1}^2 = \frac{1}{k^2}, \ k = 1, 2, \dots$$

Следовательно, $\sum\limits_{k=1}^{\infty}\sigma\!\left(A_{k}\right)\!<\!\infty$ и

$$\lim_{s\to\infty}\sigma\left(\bigcup_{k=s}^{\infty}A_k\right)=0.$$

Положим $F_{N,s} = F_N \setminus \bigcup_{k=s}^\infty A_k$, $F_{N,0} = \bigcup_{s=1}^\infty F_{N,s}$. Тогда $\sigma(F_N \setminus F_{N,0}) = 0$. Отсюда нетрудно показать, что

$$\omega^*(w,F_{N,s},G')\downarrow \omega^*(w,F_N,G'),$$

при $s \to \infty$. При фиксированном s по построению $|h_k(w)| < k$ для всех $w \in F_{N,s}$ и $k \ge s$. Из этого и оценки (3), применяя теорему о двух константах, мы получим

$$|h_k(w)| \le k^{1-\omega^*(w,F_{N,s},G')} (C\mu_k)^{\omega^*(w,F_{N,s},G')}, \ k \ge s.$$

Значит, для всех $w \in G'$ имеет место оценка

$$|h_k(w)| \le C(s)k \cdot \mu_k^{\omega^*(w, F_{N,s}, G')}, \ k = 1, 2, ...,$$
 (4)

где C(s) - константа, не зависящая от k .

Сопоставим функции f(z, w) формальный ряд Фурье – Хартогса

$$f \sim \sum_{k=1}^{\infty} a_k(z) h_k(w) , \qquad (5)$$

где $z \in D, \ w \in F_N$ и коэффициенты $a_k(z)$ определяются обычными формулами пространства H_1 :

$$a_k(z) = \int_{F_N} f(z, w) \overline{h_k}(w) d\sigma, \quad k = 1, 2, \dots$$

Покажем, что ряд (6) равномерно сходится внутри области

$$\hat{X}_N = \{(z, w) \in D \times G': \ \omega_{in}^*(z, E, D) + \omega^*(w, F_N, G') < 1\}$$

Ясно, что $a_k(z) \in O(D)$ и

$$|a_k(z)| \le N \int_{F_N} |\overline{h_k}(w)| d\sigma \le N\sigma(F), \quad z \in D,$$
 (6)

кроме того, для любого фиксированного $\xi \in E$ угловой предел $\lim_{\substack{z \to \xi \\ z \in A_-(\xi)}} f(z,w) = f(\xi,w)$ существует, для

всех $w \in F_N$ и функция f(z,w) ограниченна на множестве $(A_\alpha(\xi)) \times F_N$, $\alpha > 1$. Поэтому для любого $\xi \in E$ угловые пределы $a_k^*(\xi)$ существуют и

$$a_k^*(\xi) = \int_{F_N} f(\xi, w) \overline{h_k}(w) d\sigma, \quad k = 1, 2...,$$

причем неравенство (6) сохраняется и для $a_k^*(\xi)$, $\xi \in E$.

Для более точной оценки $a_k(z)$ мы воспользуемся голоморфностью $f(\xi,w),\ \xi\in E$, в области $G\supset\supset G'$. Так как для любого фиксированного $\xi\in E$ функция $f(\xi,w)\in H_0$, то $a_k^*(\xi)=(f,h_k)_{H_1}=\mu_k^{-2}(f,h_k)_{H_0}$. Следовательно,

$$\left| a_k^*(\xi) \right| \le \frac{1}{\mu_k^2} \|f\|_{H_0} \cdot \|h_k\|_{H_0} \le \frac{\|f\|_{H_0}}{\mu_k}, \quad \xi \in E.$$
 (7)

Обозначим через $E_j = \{\xi \in E : \|f\|_{H_0} \le j\}$. Тогда $E_j \subset E_{j+1}$, $\bigcup_{j=1}^\infty E_j = E$. Начиная с некоторого j_0 все E_j , $j \ge j_0$, имеют положительную меру на M . Используя (6), (7) и теорему о двух константах, имеем

$$|a_k(z)| \le \left(N\sigma(F_N)\right)^{\omega^*(z,E_j,D)} \cdot \left(\frac{j}{\mu_k}\right)^{1-\omega^*(z,E_j,D)}.$$
(8)

Теперь используем оценку (4) базиса $h_k(w)$. Построим последовательность $F_{N,s} \subset F_N$ такую, что $\omega^*(w,F_{N,s},G') \downarrow \omega^*(w,F_N,G')$, при $s \to \infty$ и для каждого $k \ge s$ имеет место оценка

$$|h_k(w)| \le C(s)k \,\mu_k^{\omega^*(w,F_{N,s},G')}, \quad w \in G',$$

где C(s) – константа, не зависящая от k . Объединяя это с (8), получим

$$|a_{k}(z)h_{k}(w)| \leq C(N, j, s) k \mu_{k}^{\omega^{*}(w, F_{N, s}, G')} \mu_{k}^{\omega^{*}(z, E_{j}, D) - 1} \leq C(N, j, s) k e^{L\sqrt[m]{k}(\omega^{*}(w, F_{N, s}, G') + \omega^{*}(z, E_{j}, D) - 1)}, \quad (9)$$

 $N \ge N_0, \ \ j \ge j_0, \ \ k \ge s$. Отсюда вытекает, что ряд (5) сходится равномерно внутри открытого множества

$$\widehat{X}_{N,j,s} = \{ (z, w) \in D \times G' : \ \omega^*(z, E_j, D) + \omega^*(w, F_{N,s}, G') < 1 \}.$$

Устремив $s \to \infty$, мы получим, что ряд равномерно сходится внутри области

$$\hat{X}_{N,j} = \{(z, w) \in D \times G': \omega^*(z, E_j, D) + \omega^*(w, F_N, G') < 1\}$$

Кроме того, при $j \to \infty$ мы получим, что ряд (6) равномерно сходится в области

$$\hat{X}_N = \{(z, w) \in D \times G': \ \omega_{in}^*(z, E, D) + \omega^*(w, F_N, G') < 1\}$$

и её сумма S(z,w) голоморфна в \hat{X}_N .

3. Докажем, что S(z,w) является голоморфным продолжением функции f(z,w). Для этого воспользуемся оценкой (9) и леммой 2. Не нарушая общности, мы будем считать, что $\dim M = n$. Обозначим через F'_N совокупности плюрирегулярных точек множество F_N , $N \ge N_0$, и через $E'_{j,c,t}$ следующее множество

$$E'_{j,c,t} = \left\{ \boldsymbol{\xi} = \Phi(c,t,\zeta) \in E_j \cap \partial \mathbf{A}_{c,t} : \widetilde{\omega}_{c,t}^*(\zeta, \Phi^{-1}(E_j \cap \partial \mathbf{A}_{c,t}), W_{c,t}) = 0 \right\},$$

$$(c,t) \in Q, \ j \ge j_0, \ (j_0 = j_0(c,t)),$$

где

$$\omega_{c,t}^*(\lambda,\Phi^{-1}(E_j\cap\partial\mathbf{A}_{c,t}),W_{c,t})=\omega^*(\Phi(c,t,\lambda),E_j,D)\;,\;\lambda\in W_{c,t}\;.$$

Тогда $E'_{j,c,t} \subset E'_{j+1,c,t}$, $m_1(E'_{j,c,t}) = m_1(E_{j,c,t})$ для всех $(c,t) \in Q$, и если мы положим $E'_{c,t} = \bigcup_{j \geq j_0} E'_{j,c,t}$, то $m_1(E_{c,t} \setminus E'_{c,t}) = 0$, где $E_{c,t} = E \cap \partial \mathbf{A}_{c,t}$.

Покажем, что $S(z,w) \equiv f(z,w)$ на $D \times F_N'$ и на $\Phi^{-1}(E_{c,t}') \times G$ почти для всех $(c,t) \in Q$ в смысле угловых пределов функции $S_{c,t}(\lambda,w) = S(\Phi(c,t,\lambda),w)$: $S_{c,t}^*(\zeta,w) \equiv f(\Phi(c,t,\zeta),w)$, $\Phi(c,t,\zeta) \in E_{c,t}'$. (Отметим, что $\Phi(c,t,\cdot) \in C(\overline{W}_{c,t})$ для всех $(c,t) \in Q$ и $\mathbf{A}_{c,t} \subset \Omega_E \subset D$, т.е. аналитические множества $\mathbf{A}_{c,t}$ подклеиваются к ∂D некасательным путем (см. лемма 2)). Действительно, фиксируем $\xi = \Phi(c,t,\zeta) \in E_{c,t}'$ и $w^0 \in G'$. Тогда $\xi \in E_{j,c,t}'$ для некоторого $j \geq j_0$, а $w^*(w^0,F_{N,s},G') = \theta < 1$ для некоторого s . Для любого фиксированного угла (конуса) $A_{\alpha}(\zeta) \subset W_{c,t}$, и для некоторого $\delta > 0$, P — мера

$$\omega^*(z, E_j, D) < \frac{1-\theta}{2}$$

при всех $z \in \Phi(c,t,A_{\alpha}(\zeta)) \cap \{z: |z-\xi| < \delta\}$, и, значит,

$$\left(\Phi(c,t,A_{\alpha}(\zeta))\cap\left\{z:\left|z-\xi\right|<\delta\right\}\right)\times\left\{w^{0}\right\}\subset\hat{X}_{N,j,s}.$$

Рассмотрим на этом множестве оценку

$$\left| S(z, w^{0}) - f(\xi, w^{0}) \right| = \left| \sum_{k=1}^{\infty} a_{k}(z) h_{k}(w^{0}) - \sum_{k=1}^{\infty} a_{k}^{*}(\xi) h_{k}(w^{0}) \right| \leq \sum_{k=1}^{\ell} \left| a_{k}(z) - a_{k}^{*}(\xi) \right| \left| h_{k}(w^{0}) \right| + \sum_{k=\ell+1}^{\infty} \left| a_{k}(z) h_{k}(w^{0}) \right| + \sum_{k=\ell+1}^{\infty} \left| a_{k}^{*}(\xi) h_{k}(w^{0}) \right| = I + II + III.$$

Фиксируем произвольное число $\varepsilon > 0$ и оценим каждую сумму отдельно. Для $z \in \Phi(c,t,A_{\alpha}(\zeta)) \cap \{z: |z-\xi| < \delta\}$ согласно (9)

$$|a_k(z)h_k(w^0)| \le C(N,j,s)k e^{L_{N}^{m}k} (\omega^*(z,E_j,D) + \omega^*(w^0,F_{N,s},G') - 1), \ k \ge s,$$

где

$$\omega^*(z, E_j, D) + \omega^*(w^0, F_{N,s}, G') - 1 < \frac{1-\theta}{2} + \theta - 1 < 0.$$

Следовательно, существует натуральное число ℓ такое, что

$$II = \sum_{k=\ell+1}^{\infty} \left| a_k(z) h_k(w^0) \right| < \varepsilon$$

равномерно по z . Сумма III также будет не больше чем ε , если мы выбираем ℓ достаточно большим, ибо числовой ряд

$$\sum_{k=1}^{\infty} a_k^*(\xi) h_k(w^0)$$

является абсолютно сходящимся. Теперь для фиксированного ℓ

$$I = \sum_{k=1}^{\ell} \left| a_k(z) - a_k^*(\xi) \right| \left| h_k(w^0) \right| \to 0$$

при $z \to \xi$, из-за непрерывности $a_k(z)$ на множестве

$$\Phi(c,t,A_{\alpha}(\zeta)) \cap \left\{ \xi = \Phi(c,t,\zeta) \right\}.$$

Таким образом, в силу произвольности ε , мы получим, что

$$\lim_{\begin{subarray}{c} \lambda \to \zeta \\ \lambda \in A_{\alpha}(\zeta) \end{subarray}} S_{c,t}(\lambda, w^0) = f(\Phi(c, t, \zeta), w^0)$$

и $S_{c,t}^*(\zeta,w^0) = f(\Phi(c,t,\zeta),w^0)$ на $\Phi^{-1}(E_{c,t}') \times G'$.

Для доказательства тождества $S \equiv f$ на $D \times F_N'$ заметим, что $D \times F_N' \subset \hat{X}_{N,j,s}$ и поэтому для фиксированного $w^0 \in F_N'$, функция $S(z,w^0) \in O(D)$ и угловые пределы $S_{c,t}^*(\zeta,w^0) = f(\Phi(c,t,\zeta),w^0)$ на множестве $\Phi^{-1}(E_{c,t}')$, $m_1(\Phi^{-1}(E_{c,t}')) > 0$ почти для всех $(c,t) \in Q$.

Остаётся воспользоваться известной теоремой Привалова о том, что если $D \subset \mathbf{C}$ — плоская область со спрямляемой границей ∂D и f(z) — голоморфная (не обязательно ограниченная!) в D функция, для которой угловые пределы $f^*(\xi)$ равны нулю на некотором множестве $E \subset \partial D$ положительной длины, то f(z) в D. В силу леммы 2 множество $Z = \bigcup_{(c,t) \in \mathcal{Q}} \mathbf{A}_{c,t}$ имеет положительную меру в $\mathbf{C}^n \approx \mathbf{R}^{2n}$. Мы убедимся, что голоморфная в D функция

$$S(\Phi(c,t,\zeta),w^{0}) - f(\Phi(c,t,\zeta),w^{0}) = 0, \zeta \in W_{c,t},$$

т.е. $S(z,w^0)-f(z,w^0)=0,\ z\in Z\subset D,\ m_{2n}(Z)>0$. Это означает, что $S\equiv f$ на $D\times F_N'$. Отсюда вытекает, что построенный для $F_N\subset G'$ ряд (6) определяет голоморфную в \widehat{X}_N функцию S(z,w), которая является голоморфным продолжением сепаратно-аналитческой функции f(z,w) . Так как функция S(z,w) не зависит

от N и G' , область G – сильно псевдовыпуклая, то, устремив $N \to \infty$ и $G' \to G$, мы получим голоморфную в области

$$\hat{X} = \{(z, w) \in D \times G : \omega_{in}^*(z, E, D) + \omega^*(w, F, G) < 1\}$$

функцию S(z,w), которая тождественно равна f(z,w) на множестве $D \times F'$, где $F' = \bigcup_{N=1}^{\infty} F'_N$, и в смысле «углового значения» на $E'_{c,t} \times G$ для всех $(c,t) \in Q$. Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hukuhara M. L'extensions du theoreme d' Osgood et de Hartogs/ M. Hukuhara --Kansuhoteisik ogobi Oyo-Kaiseki, 1930.
- 2. Siciak J. Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of C^n / J.Siciak// Ann. Pol. Math. -1966. T. 22. -N01. P. 145-171.
- 3. Захарюта В.П. Экстремальные плюрисубгармонические функции, гильбертовы шкалы и изоморфизмы пространств аналитических функций многих переменных, I,II.// Теория функций, функциональный анализ и их приложения. Харьков. -1974. №19. С.133-157; 1974. -№21. -С. 65-83.
- 4. Захарюта В.П. Сепаратно-аналитические функции, обобщенные теоремы Хартогса и оболочки голоморфности/ В.П. Захарюта// Мат. Сб. -1976. -101. -№1. -С.57-76.
- 5. Садуллаев А.С Граничная теорема единственности в \mathbb{C}^n / А.С. Садуллаев// Мат. Сб. -1976. -101 (143). №4. С. 568-583.
- 6. Садуллаев А.С. Плюрисубгармонические меры и емкости на комплексных многообразиях/ А.С. Садуллаев // Успехи Мат. Наук. 1981. Т. 36. Вып.4. С.53-105.
- 7. Gonchar A.A. On Bogolyubov's "edge of the wedge" theorem/A.A. Gonchar // Pros. Steklov Inst. Math. 2000. 228. P. 18-24.
- 8. Айзенберг Л.А. Формулы Карлемана в комплексном анализе. Первые приложения/ Л.А. Айзенберг. Новосибирск: Наука. 1990. С. 247.
- 9. Pflug P. A boundary cross theorem for separately holomorphic functions/ Pflug P., Nguen Viet-Anh. // Ann. Polon. Math. 2004. -84. P. 237-271.
- 10. Митягин Б. С. Аппроксимативная размерность и базисы в ядерных пространствах /Б.С. Митягин // УМН. -1961.-T.16-Вып. 4.-С.63
- 11. Хурумов Ю. В. Существование предельных значений и граничная теорема единственности для функций, мероморфных в клине в C^n /Ю.В. Хурумов//СО АН СССР, Красноярск: Институт физики им. Л.Б. Киренского, 1982. Препринт №20М. 20 с.
- 12. Имомкулов С. А. О голоморфном продолжении функций, заданных на граничном пучке комплексных прямых/С.А. Имомкулов // Известия РАН, серия математическая. 2005. Т. 69, №2. С.125 -144.
- 13. Brelot M. Etude des fonctions sousharmoniques au voisnage d'un point/M.Brelot // Act. Sciens. et Ind. 1934. V.134. P. 133 153.
- 14. Имомкулов С.А. О сепаратно-аналитических функциях многих переменных/ С.А. Имомкулов, Ж.У. Хужамов // УзМЖ. 2000. №3. С. 3-7.

ANALYTIC CONTINUATION OF SEPARATELY-ANALITIC FANCTION

S. A. Imomkulov

Let $D \subset C^n$ be a domain with a smooth boundary ∂D , $M \subset \partial D$ be a k- dimensional $(n \le k \le 2n-1)$ generic C^1 -manifold, $E \subset M$ be a subset of positive Lebesgue measure on M, and $F \subset G$ be a non-pluripolar compact subset of a strongly pseudoconvex domain $G \subset C^m$. In this work it is proved, that every separately-analytic function on the set

$$X = ((D \cup E) \times F) \cup (E \times G)$$

can be holomorphically continued to the domain

$$\hat{X} = \{(z, w) \in D \times G : \omega_{in}^*(z, E, D) + \omega^*(w, F, G) < 1\},$$

where $\omega^* - P$ - measure, and ω_{in}^* - interior P - measure.