УДК 634.0.431

ВЛИЯНИЕ ЛЕСОВОЗОБНОВИТЕЛЬНЫХ ВЫЖИГАНИЙ НА РОСТ И ГУСТОТУ ЛИСТВЕННИЧНОГО САМОСЕВА В КРИОЛИТОЗОНЕ СИБИРИ

А.М. Матвеев

Рассматривается влияние пирогенного фактора на восстановление лиственничных ценозов в лишайниковых типах леса. Выявлена связь густоты и роста самосева с силой огневого воздействия на лесной биогеоценоз. Установлена оптимальная степень выжигания напочвенной фитомассы, отрицательно влияющей на возобновление лиственницы в сухих экотопах криолитозоны.

Ведущая роль пожаров в лесообразовании и их вклад в глобальные процессы общепризнанны [1, 4, 10, 12, 13]. При этом как в ранних работах, посвященных изучению экологических последствий природных пожаров, так и в публикациях последних лет приводится разная оценка огневого воздействия на динамику и направленность сукцессионных процессов. Основываясь на результатах анализа литературных данных, а также исследований, проведенных нами на гарях в криогенной зоне [7], можно утверждать, что успешность восстановления растительной ассоциации определяется степенью трансформирования коренной природной среды и биологическими особенностями лесообразующих пород.

Одним из главных показателей перспективности формирования облика древостоев считается плотность (густота) ценозов, определяющая характер взаимоотношений особей в популяции, темпы естественного изреживания и в целом продукционный процесс [3]. Однако в состоянии относительной открытости растительной группировки, оцениваемой численностью основного эдификатора, влияние конкурентных эффектов на рост молодых особей не проявляется. В этой фазе зарождения сообщества естественными механизмами регуляции ростовых процессов выступают экологические факторы, существенно изменяющиеся в результате выжигания теплоизолирующего слоя из мохово-лишайникового покрова и подстилки.

Другим важнейшим биоэкологическим показателем ценопопуляций на начальном этапе онтогенеза выступает рост растений, отражающий степень соответствия ресурсов среды биологии новой генерации древесных пород.

В связи со сказанным в задачи исследований входило изучение особенностей роста молодого поколения леса в условиях различного сочетания экологических и фитоценотических факторов, формирующегося на экспериментальных участках вследствие воздействия на них огня разной силы. Динамика роста пирогенной генерации лиственницы, отражающей, совместно с ее численностью, репродуктивную способность вида и его устойчивость в новой среде, прослежена нами в лишайниковой группе типов леса, репрезентирующей лесной фонд среднетаежной подзоны.

Методика. Экспериментальные выжигания и последующие наблюдения на участках выполняли в 1987-2002 гг. в Байкитском округе среднетаежных лиственничных и горно-таежных темнохвойных лесов Эвенкийской провинции, на правобережье Подкаменной Тунгуски в ее среднем течении. Леса представлены лиственницей сибирской (Larix sibirica Ledeb.), произрастающей на сухих почвах, древостои которой в этих условиях отличаются низкой продуктивностью. Объектами исследований служили гари и пожарища (в понимании Н.П.Курбатского [6]).

Выжигания проводили на участках размером 40 x 50 м, каждый из которых рассматривается как самостоятельная пробная площадь. Описание насаждений и учетные работы осуществляли в соответствии с общепринятыми методами [2, 11]. Естественное возобновление на пожарищах и гарях, а также в беспожарных ценозах оценивали на 25 учетных площадках размером 2 x 2 м; характеризуя напочвенный покров, определяли его фитоценотические показатели (проективное покрытие, обилие, фитомассу) на площадках 0,5 х 0,5 м.

Для установления зависимости динамики роста самосева лиственницы от силы огневого воздействия на лесной биогеоценоз были выполнены серии выжиганий напочвенного горючего, при которых несгоревший слой подстилки варьировался от 0 до 3 см. Это позволяет провести градиентный анализ и выявить оптимальный режим пирогенной трансформации среды обитания, обеспечивающий лучший рост и наибольшую численность молодых особей древесных пород в конкретных лесорастительных условиях.

Напочвенные горючие материалы выжигали фронтальной кромкой, отличающейся стабильностью распространения и формирующей равномерную динамику, схожую с динамикой стихийного пожара [4, 14]. Толщину сгоревшего слоя подстилки замеряли при помощи Г-образных металлических штырей, равномерно размещаемых на площади до зажигания лесного горючего.

Экспериментальные участки представлены чистыми древостоями из главной породы. Насаждения V класса бонитета, запасы древесины составляют $100-130~{\rm m}^3/{\rm ra}$ в возрасте $110-150~{\rm net}$. В живом напочвенном

^{*} А.М. Матвеев, Институт повышения квалификации руководящих работников и специалистов лесного хозяйства Сибири и Дальнего Востока, 2006.

Вестник КрасГУ

покрове доминирующая роль принадлежит лишайникам рода Cladonia, подлесок редкий (сомкнутость 0,1-0,2), естественное возобновление на участках слабое, зачастую неудовлетворительное.

Результаты и обсуждение. Обследование выжженных участков подтверждает значимость степени выгорания напочвенного покрова и фитодетрита как показателя силы эмпирического пожара для появления всходов и сохранности самосева, а также последующего роста нового поколения лесообразующей породы. В табл.1 представлена динамика роста пирогенной генерации лиственницы в сухих экотопах.

Таблица 1 Динамика роста лиственницы на гарях и пожарищах в зависимости от толщины сохранившегося слоя подстилки

	Толщина подстилки, см										
Давность	(0	0,5-1		1,5-2		2,5-3				
пожара,	Показатели самосева										
лет	высота,	диаметр,	высота,	диаметр,	высота,	диаметр,	высота,	диаметр,			
	СМ	MM	СМ	MM	СМ	MM	СМ	MM			
2	3,5±0,14	$0,9\pm0,06$	4,9±0,17	1,2±0,12	4,5±0,22	$1,1\pm0,05$	3,8±0,16	1,0±0,05			
3	4,6±0,19	1,1±0,09	7,2±0,33	1,6±0,15	6,3±0,31	1,4±0,07	5,5±0,24	1,3±0,05			
4	5,9±0,20	1,4±0,14	9,8±0,68	2,1±0,21	8,1±0,47	1,9±0,18	7,1±0,33	1,6±0,14			
5	7,3±0,36	1,7±0,16	13,0±0,80	2,4±0,29	11,0±0,65	2,2±0,18	10,2±0,52	2,0±0,17			
6	9,6±0,56	1,9±0,22	18,7±1,16	2,8±0,33	14,9±0,87	2,7±0,25	12,9±0,72	2,3±0,16			
7	11,8±0,64	2,2±0,26	22,0±1,43	3,3±0,37	18,2±1,19	2,9±0,30	15,4±0,74	2,6±0,25			
8	15,2±0,83	2,6±0,28	29,3±1,57	4,2±0,40	23,7±1,32	3,4±0,42	19,0±0,97	2,8±0,30			
9	20,3±1,09	3,0±0,29	34,3±1,90	4,9±0,47	27,4±1,42	4,0±0,39	23,5±1,18	3,3±0,39			
10	24,0±1,29	3,5±0,36	40,2±2,04	5,5±0,61	33,5±1,70	4,7±0,58	28,6±1,51	3,9±0,47			
11	28,2±1,64	4,1±0,33	47,1±2,31	6,4±0,58	39,6±1,65	5,3±0,66	34,3±1,82	4,6±0,60			
12	32,1±1,83	4,7±0,43	53,4±2,47	7,1±0,72	43,8±1,96	5,8±0,70	37,7±1,86	4,9±0,62			

На гарях, где огонь полностью уничтожил подстилку, основные биометрические показатели самосева ниже, чем на пожарищах. С уменьшением уровня экзогенной трансформации среды темпы роста лиственницы повышаются. Максимальные высоту и диаметр (53,4 см и 7,1 мм соответственно) подрост имел в вариантах, где несгоревший слой детрита варьировался в пределах 0,5-1 см. Затем, по мере ослабления деструктивного огневого прессинга на биогеоценоз, рост главной породы замедлялся. Так, при уничтожении лишайникового покрова и легком обжигании подстилки высота лиственницы составляла 37,7 см, а диаметр — 4.9 мм.

Слабый рост растений на гари, представляющей собой на начальном этапе лесовосстановления открытое сообщество, где почти отсутствует корневая конкуренция за элементы минерального питания и воду, определяется интегральным воздействием нескольких факторов. Однако из всей совокупности значимых факторов на стадии зарождения ценоза в изучаемых условиях следует выделить термический режим почвы, на поверхности которой в июле отмечаются летальные для нежных растительных тканей температуры, и влажность ее верхнего горизонта. Максимальные изменения указанных параметров наблюдаются в первые послепожарные годы (табл.2).

Влажность и температура почвы в июле на пожарищах и гарях 1-3-летней давности

1 5 Mether Auditoeth									
Период на-	Влажность, %		Температура максимальная (⁰ C) на глубине						
блюдений	(0-5 см)			0-1 см			5 см		
	1 год	2 год	3 год	1 год	2 год	3 год	1 год	2 год	3 год
Гари									
I декада	12,2	11,6	11,8	52,3	51,8	46,3	20,4	21,2	19,5
II декада	9,4	13,8	16,3	55,6	-	40,7	22,1	19,8	17,2
III декада	12,1	9,3	-	47,2	49,4	38,9	19,6	18,4	15,3
среднее	11,2	11,2	14,1	51,7	50,6	42,0	20,7	19,8	17,3
Пожарища									
I декада	19,3	16,0	14,7	34,8	34,3	28,7	16,9	15,3	-
II декада	15,1	18,9	21,5	36,6	34,0	25,9	16,1	15,5	13,3
III декада	20,6	13,4	18,5	32,8	32,4	24,7	14,2	14,0	12,1
среднее	18,3	16,1	18,2	31,7	33,6	26,4	15,4	14,9	12,7

Таблина 2

Вестник КрасГУ

Высокий уровень трансформации среды обитания вызывает нарушение сложившегося равновесия между компонентами биогеоценозов и способствует изменению гидротермического режима почв. Влажность и температура являются важными экологическими факторами, регулирующими почвенные процессы [9], поэтому на участках, где при выжигании использовали огонь разной силы, создаются неравноценные условия для лесовозобновления.

При изучении температурного режима почв гарей установлено, что в самый жаркий месяц вегетационного сезона максимальные температуры на поверхности субстрата могут превышать 50 °C, а на глубине 5 см подниматься выше 20 °C. Такая сильная прогреваемость почв на стадии «черной гари» обусловлена хорошим поглощением лучистой энергии ее поверхностью, так как отражательная способность в этом случае составляет около 10 % в сравнении с 20 % у подстилки [5]. Отсутствие теплоизолирующего слоя мертвой фитомассы на минеральном субстрате усиливает его нагрев. На пожарищах почвенные температуры значительно ниже и убывают в соответствии с увеличением мощности сохранившегося детрита.

Несомненно, существенное влияние на тепловой режим почв оказывает и степень нарушенности древостоя: при полном выгорании подстилки в сухих экотопах послепожарный отпад деревьев достигает 68 %, а при частичном (толщина подстилки равна 2,5-3 см) - лишь 9 %.

Рассмотренные воздействия в значительной степени определяют и водоснабжение пирогенной генерации древесных пород. Вместе с тем, для более полного представления о режиме послепожарного увлажнения верхнего почвенного горизонта следует дать некоторые пояснения. Почвенный субстрат гарей в вегетационный сезон увлажняется периодически за счет выпадающих осадков. Однако бесструктурные почвы, обладающие хорошей водопроницаемостью, но низкой влагоемкостью, пропускают воду в нижние слои, где она становится недоступной молодым растениям, имеющим недостаточно развитую корневую систему. Водоподъемная способность почв легкого гранулометрического состава невелика, и потому запасы влаги, потерянные поверхностным слоем почвы путем физического испарения (эвапорации), не могут быть выполнены за счет капиллярного ее подъема из нижних почвенных горизонтов [9].

Приведенные материалы отражают дестабилизирующее влияние сильных пожаров на водный режим почвы: влажность ее верхнего горизонта на гарях в период интенсивного роста самосева существенно уменьшилась.

Дополнительную информацию о качестве возобновительной среды дает плотность ценоза, а также размещение молодых особей на выгоревшей площади и наличие в составе пирогенной генерации здорового подроста (табл.3).

Таблица 3 Состояние естественного возобновления лиственницы на экспериментальных участках (давность выжиганий – 12 лет)

То ниния нестороровного	Ι	устота подро	оста, тыс.шт/	Жизнеспособ-	Ветронее		
Толщина несгоревшего слоя подстилки, см	всего	здоровый	сомни- тельный	усыхаю- щий	ность, %	Встречае- мость, %	
0	8,8	4,9	2,3	1,6	56	53	
0,5-1	13,7	8,2	4,3	1,2	60	100	
1,5-2	9,3	7,0	1,4	0,9	75	48	
2,5-3	3,0	2,1	0,6	0,3	70	25	

Наибольшая густота подроста, как и численность здоровых экземпляров, - во втором варианте, где толщина несгоревшего слоя детрита составила 0,5-1 см. При изменении силы пожара в ту или иную сторону эти показатели уменьшаются. Однако жизнеспособность естественного возобновления, определяемая как процент здоровых особей от общего их количества, больше в двух последних вариантах.

Вместе с тем, оценивая состояние подроста на выгоревших участках, необходимо учесть еще один показатель, характеризующий хорологический аспект лесообразовательного процесса, — встречаемость растений. В насаждениях, где естественный ход возобновления нарушается внешними факторами, размещение нового поколения древесных пород зависит главным образом от доступности воды и питательных веществ - основных лимитирующих факторов в области распространения многолетней мерзлоты. Разреженность крон и невысокая сомкнутость полога лиственничников позволяют утверждать, что свет в этих условиях не является фактором, контролирующим появление и выживание растений [1, 10].

Высокий показатель встречаемости (100 %) отмечен лишь на одном участке, что свидетельствует о формировании там однородных экологических и фитоценотических условий. На других участках наблюдается групповое и куртинное размещение особей, иллюстрирующее неодинаковость микроусловий среды.

Оценивая послепожарное возобновление лиственницы в лишайниковых типах леса, следует подчеркнуть, что в пределах одних и тех же эдафотопов успешность возобновительного процесса определяется силой прошедшего пожара. Проведенные исследования позволили установить оптимальную степень выжига-

Вестник КрасГУ

ния органогенного субстрата, позитивно влияющую на пространственную структуру молодого поколения и его рост на начальной стадии образования растительного сообщества.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абаимов, А.П. Мерзлотное лесоведение / А.П.Абаимов, П.М.Матвеев. Красноярск: Изд-во СибГТУ, 1999. 249с.
- 2. Анучин, Н.П. Лесная таксация / Н.П.Анучин. М.: Лесн.пром-сть, 1982. 552с.
- 3. Бузыкин, А.И. Густота и продуктивность древесных ценозов / А.И.Бузыкин, Л.С.Пшеничникова, В.Г.Суховольский. Новосибирск: Наука, 2002. 152с.
- 4. Ваганов, Е.А. Пожары сибирской тайги / Е.А. Ваганов, В.В. Фуряев, А.И. Сухинин // Природа . 1998. №7. С.51-62.
- 5. Гаврилова, М.К. Радиационный режим в лиственничных лесах Юго-Западной Якутии / М.К. Гаврилова // Лесоведение. 1969. №1. С.31-35.
- 6. Курбатский, Н.П. Терминология лесной пирологии / Н.П. Курбатский // Вопросы лесной пирологии. Красноярск: Изд-во ИЛиД СО АН СССР, 1972. – С.171-231.
- 7. Матвеев, А.М. Пожары среднетаежной подзоны Восточный Сибири / А.М.Матвеев. Дивногорск: Издво ИПКЛХ СиДВ, 2002. 171с.
- 8. Матвеев, П.М. Прогнозирование скорости распространения лесных пятнистых пожаров / П.М. Матвеев, А.М. Матвеев // Характеристика процессов горения в лесу. Красноярск: Изд-во ИЛиД СО АН СССР, 1977. С.67-76.
- 9. Роде, А.А. Почвоведение / А.А.Роде, В.Н.Смирнов. М.: Высшая школа, 1972. 480с.
- 10. Софронов, М.А. Пирологическая характеристика лесных экосистем вдоль трансекта / М.А. Софронов, А.В. Волокитина // Лесные экосистемы Енисейского меридиана. Новосибирск: Изд-во СО РАН, 2002. C.109-117.
- 11. Сукачев, В.Н. Методические указания к изучению типов леса / В.Н.Сукачев, С.В.Зонн. М.: Изд-во АН СССР, 1961. 144с.
- 12. Ткаченко, М.Е. Леса Севера / М.Е. Ткаченко // Тр.по лесн.опыт.делу в России. Вып.25. СПб., 1911. 91c
- 13. Goldammer, J.G. The wiidland fire season 2002 in the Russian Federation / Goldammer J.G. // International Forest Fire News No.28, 2003. P.2-14.
- 14. McRae, D.J. Site preparation prescribed fire in Regenerating the Canadian Forest: Priciples and Practices for Ontario / D.J.McRae, M.G.Weber, P.C.Ward. Ontario, 2001. P.201-219.

THE INFUENCE OF REGENERATION BURNING ON THE GROWTH AND DENSITY OF LARCH SELF-SEEDING IN CRYOLITHIC ZONE OF SIBERIA

A.M. Matveev

Fhe influence of pyrogenic factor on larch cenosis rehabilitation in lichen tipes of forest is considered. The connection of self-seeding density and growth with fire intensity on forest biogeocenosis is shown. The optimum degree of burning of ground biomass, which influence on larch renewal in dry ecotopes has a negative value, is elaborated.