УДК 541.136 + 539.184.2

ТЕРМОДИНАМИКА ЭЛЕКТРОХИМИЧЕСКИХ РЕАКЦИЙ КЛАСТЕРНЫХ СОЕДИНЕНИЙ ПЕРЕХОДНЫХ МЕТАЛЛОВ¹

Г.В. Бурмакина, Н.И. Павленко, Е.А. Шор, А.И. Рубайло^{*}

Рассчитаны термодинамические характеристики кластерных соединений переходных металлов на основе значений потенциалов полуволн обратимых одноэлектронных стадий окисления и восстановления. Полученные результаты сопоставлены с данными электронной спектроскопии и квантово-химическими расчетами. Установлена связь термодинамических характеристик кластеров с их строением.

В термодинамически обратимых окислительно-восстановительных (О-В) системах в условиях электрохимического равновесия происходит полное превращение свободной химической энергии О-В реакции в электрическую энергию. Электрохимическая реакция обратима, если окисленная и восстановленная формы настолько устойчивы, что реакция может быть проведена в любом направлении при одном и том же значении О-В потенциала полуволны (E_{1/2}). В этом случае О-В потенциал характеризует электрическую энергию эквивалентную свободной энергии О-В реакции и, следовательно, его определение при постоянных температуре и давлении позволяет рассчитать изменение свободной энергии Гиббса (ΔG) при прохождении данной О-В реакции:

$$\Delta G = -nFE_{1/2}, \tag{1}$$

¹ Работа выполнена при финансовой поддержке INTAS (проект № 00-291).

^{* ©} Г.В. Бурмакина, Н.И. Павленко, Е.А. Шор, Институт химии и химической технологии СО РАН; А.И. Рубайло, Красноярский государственный университет, 2004.

где n – количество электронов, участвующих в потенциалопределяющей стадии, F – число Фарадея, E_{1/2} – окислительно-восстановительный потенциал полуволны обратимой одноэлектродной стадии.

Особенности электронного строения кластерных молекул – наличие густой сети близко расположенных верхних заполненных молекулярных орбиталей (B3MO) и соответствующих им разрыхляющих нижних вакантных молекулярных орбиталей (HBMO) – обусловливают появление у них множества обратимых окислительно-восстановительных переходов [1]. Те же причины, по-видимому, определяют особую роль кластерных группировок в функционировании многоядерных окислительно-восстановительных ферментов [2].

Применение электрохимических методов для обратимых О-В процессов позволяет получить термодинамическую величину – потенциал полуволны (E_{1/2}), характеризующую энергию молекулярной орбитали кластера, на которой происходят электронные изменения в О-В реакции. Принято считать, что при переходе от активированного деполяризатора к первичному продукту электродной реакции электронные изменения в случае восстановления локализуются на HBMO, а в случае окисления – на ВЗМО кластера. Сравнение О-В потенциалов дает информацию об относительном расположении верхних заполненных и нижних вакантных орбиталей для ряда родственных или структурно близких соединений. Меняя металлы или лиганды в кластере, можно, соответственно, изменять их редокс-потенциалы, а следовательно, и электронные характеристики кластеров.

Вопрос, каким образом изменяются свойства кластеров в зависимости от их строения, является одним из фундаментальных. Подобная информация особенно важна для таких молекул, как кластеры, для которых трудно получить необходимый экспериментальный материал обычно применяемыми физико-химическими методами и современными квантово-химическими расчетами из-за сложности строения этих объектов.

Среди простейших кластерных соединений чаще всего встречаются такие, числа кластерных валентных электронов (КВЭ) в которых соответствуют так называемым «магическим» числам [3]. Иначе говоря, это такие кластеры клозо-типа, у которых все связующие кластерные валентные молекулярные орбитали (КВМО) заполнены электронами. Кластеры этого типа рассматриваются как трехмерные ароматические системы [4], и к ним целесообразно применить подход, разработанный для оценки энергии МО ароматических молекул [5]. Для системы

$$Q^{+} \xrightarrow[-e^{-}]{} Q^{+} \xrightarrow[-e^{-}]{} Q^{-}, \qquad (2)$$

....

где Q, Q^+, Q^- – кластерная молекула, ее катион- и анион-радикалы соответственно, справедливо равенство

$$E_{B3MO} - E_{HBMO} = IP - EA.$$
(3)

Величины ионизационных потенциалов IP и сродства к электрону EA определяются следующими выражениями [5]:

$$IP = E^{0}_{ox} - (\Delta G^{0})_{solv(Q-Q)}^{+} + \Phi, \qquad (4)$$

$$EA = E^{0}_{red} - (\Delta G^{0})_{solv(Q-Q)} + \Phi, \qquad (5)$$

где Ф – работа выхода электрона для материала используемого электрода.

Примем, что разность энергии сольватации ΔG^0_{solv} при окислении и восстановлении кластеров в одних и тех же условиях одинакова, как это принято для ароматических систем, поскольку в известное уравнение Борна для расчета ΔG^0_{solv} [6] входят величины, остающиеся постоянными в процессах I и II (2) при сохранении неизменной геометрии остова кластера. В случае кластерных соединений, имеющих значительный размер молекул, присоединение или удаление электрона не приводит к большому изменению геометрии молекул, причем электроны в таких системах делокализованы по всему металлоостову, и чем больше размер и компактнее структура молекул, тем меньше эти изменения. Так, для кластеров $Fe_4(\eta^5-C_5H_5)_4(\mu_3-CO)_4$ [7] и $Ni_6(\eta^5-C_5H_5)_6$ [8] установлено, что нейтральная молекула, катион и анион имеют практически идентичную геометрию. Следовательно,

$$IP - EA = E^0_{ox} - E^0_{red} = \Delta E^0_{ox-red}.$$
 (6)

Выражение для разности потенциалов окисления и восстановления легко получить из уравнения Нернста:

$$E_{ox} = E_{ox}^{0} + RT/nF \cdot \ln \left(\gamma_{Q}^{+}C_{Q}^{+}/\gamma_{Q}C_{Q}\right), \qquad (7)$$

$$E_{red} = E_{red}^{0} + RT/nF \cdot \ln (\gamma_{O} C_{O} / \gamma_{O} C_{O}), \qquad (8)$$

где γ_Q , γ_Q^+ , γ_Q^- – коэффициенты активности кластера, C_Q , C_Q^+ , C_Q^- – концентрации его форм.

Концентрации кластеров при электрохимических измерениях очень малы, поэтому их коэффициенты активности γ_Q , γ_Q^+ , γ_Q^- близки к единице. В точке потенциала полуволны $\gamma_Q^+C_Q^+ = \gamma_Q C_Q$, $\gamma_Q^-C_Q^- = \gamma_Q C_Q$; $(E_{1/2})_{ox} = E_{ox}^0$, $(E_{1/2})_{red} = E_{red}^0$

$$(E_{1/2})_{ox} - (E_{1/2})_{red} = E_{ox}^{0} - E_{red},$$

T.e. $E_{B3MO} - E_{HBMO} = (E_{1/2})_{ox} - (E_{1/2})_{red} = \Delta E_{ox-red}.$ (9)

Следовательно, определение величин О-В потенциалов обратимых одноэлектронных процессов окисления и восстановления кластерных молекул в одних и тех же строго соблюдаемых условиях (растворитель, фоновый электролит, концентрация соединений, температура), на одном и том же электроде позволяет рассчитать разность энергий ВЗМО и НВМО (ΔE_{ox-red}), т.е. величину энергетической щели данной кластерной молекулы.

В таблице приведены литературные и полученные нами данные об О-В потенциалах, а также рассчитанные на их основе термодинамические характеристики кластерных соединений переходных металлов, имеющих обратимые одноэлектронные стадии окисления и восстановления. Там же для сравнения представлены данные для кластеров, имеющих обратимые стадии восстановления при необратимых стадиях окисления. Поскольку значения Е_{1/2} окисления и восстановления кластеров измерены относительно разных электродов сравнения, то для расчета изменения свободной энергии О-В процесса (ΔG^0) они были приведены нами к стандартному водородному электроду (таблица) с использованием результатов сопоставления различных электродов сравнения в различных растворителях, представленных в работе [9]. Полученные данные можно применять для сравнения величин ΔG^0 процессов окисления или восстановления кластеров, только если они измерены в одинаковых условиях. Значения энергетической щели ΔE_{ox-red} кластерных молекул, в отличие от ΔG^0 , не зависят от экспериментальных условий измерения их потенциалов, поскольку рассчитываются на основании величин Е1/2 обратимых одноэлектронных процессов окисления и восстановления одного и того же кластера, измеренных в идентичных условиях. Поэтому с целью установления влияния строения кластеров на их свойства корректнее использовать величины ΔE_{ox-red} . В то же время сравнение значений ΔG_{ox}^0 или ΔG^0_{red} дает полезную информацию конкретно для обратимого процесса окисления или восстановления кластеров.

Простейшим кластерным соединением с «магическим» числом КВЭ является 48-электронный трехчленный металлоцикл $Os_3(CO)_{12}$ (см. комплекс 1 в таблице). Отсутствие мостиковых лигандов и высокая симметрия молекул делают его удобным объектом для экспериментальных и теоретических исследований. Качественная схема граничных орбиталей трехчленных металлоциклов подгруппы железа известна [10] и топологически аналогична орбиталям циклопропана [11]. Эта аналогия простирается не только на топологическое соответствие структур и природу граничных орбиталей, но и на химическое поведение. В работе [12] нами было установлено сходство $Os_3(CO)_{12}$ (1) с циклопропаном в реакциях раскрытия и замыкания цикла. Определены значения $E_{1/2}$ обратимых одноэлектронных процессов окисления и восстановления для кластера $Os_3(CO)_{12}$ (1) на платиновом электроде в ацетонитриле с 0,1 М Et_4NBF_4 , которые равны +0,90 и –1,76 В относительно Ag/0.1 М $AgNO_3$ в MeCN, соответственно [11] (таблица). Таким образом, величина ΔE_{ox-red} для (1) составляет 2,66 В. Экспериментально найденная электрохимическим методом величина ΔE_{ox-red} хорошо согласуется со значением $\Delta E_{B3MO-HBMO} = 2,71 \pm 0,1$ эВ, полученным из квантово-химических расчетов [13].

Анализ электронных спектров поглощения кластера $Os_3(CO)_{12}$ (1) [13] показывает, что переход $10a' \rightarrow 6a_2'$ (ВЗМО – НВМО), энергия которого соответствует величине энергетической щели ($\Delta E_{B3MO-HBMO}$), не наблюдается. В то же время из данных электрохимических измерений энергия этого перехода может быть рассчитана. Вычисленная квантово-химическим методом энергия этого перехода для (1) (2,79 эВ) [13] близка к величине, полученной на основании электрохимических данных.

Сопоставление значений $E_{1/2}$ обратимых одноэлектронных процессов окисления и восстановления с теоретическим расчетами позволяет рассчитать величину ($\Delta G_{solv} - \Phi$) (в эВ и кДж/моль) кластера, определив которую можно оценить потенциал ионизации IP и сродство к электрону EA для ряда структурно близких соединений по уравнениям (4,5). Так, энергия B3MO или IP для кластера Os₃(CO)₁₂ (1) равна 7,54 эВ [12], значение $E_{1/2}$ окисления - 0,90 B [11]. Подставляя эти значения в преобразованное уравнение (5), получаем ($\Delta G_{solv} - \Phi$) = $E_{1/2} - IP = 0,90 - 7,54 = -6,64$ эВ. В случае восстановления ($\Delta G_{solv} - \Phi$) = $E_{1/2} - EA = -1,76 - 4,91 = -6,67$ эВ. Видно, что величины ($\Delta G_{solv} - \Phi$) для процесса окисления и восстановления кластера Os₃(CO)₁₂ (1) близки. Для ароматических соединений эта величина для процесса окисления составляет 6,36 эВ, а IP = $E_{1/2} + 6,36$ эВ [5].

Нами определены значения $E_{1/2}$ одноэлектронных волн окисления и восстановления кластеров $Ru_3(CO)_{12}$ (2) и $Fe_3(CO)_{12}$ (3) в аналогичных условиях, что и (1) (таблица). Процесс окисления кластеров (2) и (3) необратим. Одноэлектронные волны восстановления для всех трех кластеров (1-3) обратимы. Следовательно, для них можно рассчитать изменение свободной энергии ΔG^0_{red} в процессе их восстановления. Сравнение этих величин показывает, что замена атомов Os в трехчленном металлоцикле (1) на атомы Ru и Fe приводит к уменьшению ΔG^0_{red} для кластеров (2) и (3) на 38,59 и 98,41 кДж/моль, соответственно (таблица). Физическая химия

Таблица

	Терм	аодинамиче	ские характе	ристики кла	астерных сое	динений пе	м хічндохэд	еталлов		
Š	Соединение	EBJ	$(E_{1/2})_{ox}, B$	$-(E_{1/2})_{red}$	$\Delta E_{ox-red}, B$	Лит-ра	E^{0}_{ox}, B	$-\Delta G^{0}_{ox}$	$-E^{0}_{red}$, B	$-\Delta G^0_{red}$
				В				кДж/моль		кДж/моль
1	$Os_3(CO)_{12}$	48	06'0	1,76	2,66	[12]	1,48	142,80	1,18	113,85
0	Ru ₃ (CO) ₁₂	48	$0,90^{*}$	1,36	2,26		1,48	142,80	0,78	75,26
e	$\operatorname{Fe}_{3}(\operatorname{CO})_{12}$	48	$1,50^{*}$	0,74	2,24	[14]	2,08	200,69	0,16	15,44
4	$Co_3(\eta^5-C_5H_5)_3(\mu_3-CO)(\mu_3-NH)$	48	-0,07	2,03	1,96	[17]	0,17	16,40	1,79	172,71
5	$Co_3(\eta^5-C_5H_5)_3(\mu_3-CS)(\mu_3-S)$	48	0,51	1,06	1,57	[18]	1,09	105,17	0,48	46,31
9	$Co_3(\eta^5-C_5H_5)_3(\mu_3-S)_2$	50	-0,12	1,13	1,01	[18]	0,46	44,38	0,55	53,07
7	Ni ₃ (η^5 -C ₅ H ₅) ₃ (μ_3 -S) ₂	53	0,12	0,75	0,87	[18]	0,70	67,54	0,17	16,40
8	$Co_4(CO)_8(dppm)_2$	60	0,51	1,22	1,73	[19]	0,75	72,37	0,98	94,56
6	Co4(CO)9dppe	60	0,82	0,89	1,71	[20]	1,06	102, 25	0,65	62,72
10	$Co_4(CO)_6(dppe) \cdot (\pi - PhC \equiv CPh)$	60	0,29	1,33	1,62	[20]	0,53	51,14	1,09	105,17
11	$Fe_4(\eta^5-C_5H_5)_4(\mu_3-CO)_4$	60	0,32	1,30	1,62	[7]	0,56	54,03	1,06	102,28
12	$Fe_4(\eta^5-C_5H_5)_4(\mu_3-S)_4$	68	0,33	0,33	0,66	[21]	0,57	55,00	0,09	8,68
13	$Ni_6(\eta^5-C_5H_5)_6$	90	-0,42	1,01	0,59	[8]	-0,18	17,37	0,77	74,30
14	$[Co_8C(CO)_{18}]^{2-}$	114	-0,01	0,81	0,80	[22]	0,23	22,19	0,57	55,00
15	$[Ni_{38}Pt(CO)_{48}]^{6-}$	492	-0,62	0,97	0,35	[23]	-0,38	36,67	0,73	70,44
16	$[HNi_{38}Pt(CO)_{48}]^{5-}$	492	-0,61	0,98	0,37	[23]	-0,37	35,70	0,74	71,40
* Heo6	ратимая стадия									

В работе [15] изучено электрохимическое поведение, фотоэлектронные спектры и проведен квантовохимический расчет 48-электронных трехъядерных кластеров осмия (μ -H)Os₃(CO)₉(μ -C₅H₃N-2-C(H)=N-ⁱPr), (μ -H)Os₃(CO)₉(μ -6-CH₂-C₅H₃N-2-C(H)=N-ⁱPr) и (μ -H)Os₃(CO)₉(μ -2,3-dipyrid-2'-ylbenzoquinoxaline-14-yl). Значения $\Delta E_{\rm B3MO-HBMO}$ для этих кластеров, рассчитанные на основе электрохимических данных (2,34; 2,30 и 1,82 В, соответственно) и данных фотоэлектронных спектров (2,02; 2,04 и 1,80 эВ, соответственно), близки. Теоретически рассчитанная величина $\Delta E_{\rm B3MO-HBMO}$ (0,5 – 1,0 эВ) значительно меньше экспериментально полученного значения и не согласуется с результатами, приведенными в данной работе для трехъядерных кластеров.

Для тетраэдрических кластеров имеется существенно меньше информации для сравнительного анализа. В работе [7] приведены величины максимумов полос поглощения растворов $Fe_4(\eta^5-C_5H_5)_4(\mu_3-CO)_4$ (11) в ацетонитриле, однако нет отнесения их к тем или иным переходам. Самый длинноволновый переход в этом спектре ($\lambda_{max} = 775$ нм, $\epsilon \approx 3500$) соответствует $\sigma \to \sigma^*$ переходу. Его энергия (E = 1239,81/ λ (нм) = 1,60 эВ) близка к найденной из электрохимических данных величине энергетической щели 1,62 эВ [7] (таблица).

Далее в таблице приведены значения потенциалов обратимых одноэлектронных процессов окисления и восстановления некоторых других кластерных молекул различного строения с «магическим» числом КВЭ, а также с числом КВЭ больше «магического». Сравнение термодинамических величин приведенных в таблице кластеров позволяет сделать следующие выводы, характеризующие связь между структурой, числом КВЭ и величиной энергетической щели кластерных соединений переходных металлов. 1. Для трехъядерных кластеров с «магическим» числом KB3 = 48 величина энергетической щели $\Delta E_{\text{ox-red}}$ находится в интервале от 2 до 3 эВ. 2. Замена атомов Os в трехчленном металлоцикле Os₃(CO)₁₂ (1) на атомы Ru или Fe приводит к уменьшению $\Delta E_{\text{ox-red}}$ на 0,4 эВ. 3. Введение μ_3 -мостиковых лигандов и объемных лигандов (η^5 -C₅H₅) в трехчленный металлоцикл приводит к уменьшению энергетической щели, $\Delta E_{ox-red} < 2$ эВ. 4. Увеличение числа КВЭ больше «магического» в трехъядерных кластерах, которое достигается заменой двухэлектронного мостикового лиганда µ₃-CS в (5) на четырехэлектронный µ₃-S или атомов Со в (6) на Ni, приводит к уменьшению $\Delta E_{\text{ox-red}}$ с 1,57 до 1,01 и 0,87 эВ, соответственно. 5. Для четырехъядерных кластеров с «магическим» числом KBЭ = 60 величина энергетической щели ΔE_{ox-red} находится в интервале от 1 до 2 эВ. 6. Увеличение числа КВЭ больше «магического» до 68 в четырехъядерном кластере (12) или до 90 в шестиядерном (13) (имеющего плотную упаковку объемных лигандов η^5 -C₅H₅ на поверхности металлического остова, экранирующих связи металл-металл от внешних воздействий) приводит к величине $\Delta E_{ox-red} < 1$ эВ. 7. Кластеры с большим числом атомов металлов (38) имеют $\Delta E_{ox-red} < 0,4$ эВ.

Ранее предполагалось, что кластерные молекулы с заполненными КВМО в твердом состоянии являются широкозонными полупроводниками [15] с величиной энергетической щели ≥ 1 эВ, но < 3 эВ, а свойства всего кристалла, в первую очередь, определяются уровнями энергии отдельно взятых молекул. Действительно, полученные в данной работе результаты подтверждают эти общие положения и показывают, что величины $\Delta E_{\text{ox-red}}$ в кластерных молекулах изменяются в достаточно широких пределах. Так, для тетраэдрических кластеров с «магическим» числом КВЭ эти величины изменяются от 1,6 до 1,7 эВ и отличаются почти на 1 эВ от соответствующей величины для Os₃-цикла, не имеющего мостиковых лигандов, на 0,5 эВ - от трехчленных циклов, содержащих µ₃-лиганд, и практически совпадают с величиной для трехчленного металлоцикла, содержащего два μ_3 -лиганда. Значения $\Delta E_{ox-red} < 1$ эВ для кластеров, число КВЭ в которых существенно превышает «магическое», причем чем больше превышено «магическое» число, тем меньше величина энергетической щели. Во всех этих случаях при О-В превращениях типа I и II электронный обмен осуществляется между МО, разрыхляющими по отношению к металлическому остову. Аналогичные величины ΔE_{ox-red} должны, по-видимому, наблюдаться и для кластеров, число КВЭ в которых существенно меньше «магического». В этом случае при О-В превращениях типа I и II электронный обмен осуществляется между МО, имеющими существенный вклад орбиталей лигандов, и, возможно, кратных связей металл-металл. И в том и другом случае мы попадаем в область, где расположено значительное число МО, мало отличающихся по энергии и, соответственно, электронные переходы между ними не требуют существенных затрат энергии.

СПИСОК ЛИТЕРАТУРЫ

- Manning M.C. Electronic structures of transition metal cluster complexes / M.C. Manning, W.C. Trogler // Coord. Chem. Rev.-1981.-V.38.-P. 89-138.
- Лихтентейн Г.И. Кластеры в биологических объектах / Г.И. Лихтентейн // ЖВХО им. Д.И. Менделеева.-1987.-Т.32.-С.61-69.
- Словохотов Ю.Л. Строение кластерных соединений переходных металлов и границы применимости правил подсчета электронов в полиэдрических молекулах / Ю.Л. Словохотов, Ю.Т. Стручков // Успехи химии.-1985.-Т.14.-С.556-590.
- Словохотов Ю.Л. Простая модель сверхароматического кластера и границы применимости схемы подсчета электронов / Ю.Л. Словохотов, Ю.Т. Стручков // Коорд. химия.-1984.-Т.10.-Вып.5.-С.597-602.
- 5. Parker V.D. On the problem of assigning values to energy changes of electrode reactions / V.D. Parker // J. Amer. Chem. Soc.-1974.-V.96.-№ 17.-P. 5656-5659.
- 6. Дей К. Теоретическая неорганическая химия / К. Дей, Д. Селбин.-М.: Химия, 1971.-416 с.

- Ferguson J.A. Multiple oxidation states in [(π-C₅H₅)Fe(CO)]₄ cluster system / J.A. Ferguson and T.J. Meyer // J. Amer. Chem. Soc.-1972.-V. 94.-№ 10.-P. 3409-3412.
- Paquette M.S. Clusterification of reactive species generated through chemical reduction of metallocenes: synthesis and stereochemical characterization of a new hexameric series of metal-cyclopentadienyl clusters, [Ni₆(η⁵-C₅H₅)₆]ⁿ (n=0, +1) / M.S. Paquette, L.F. Dahl // J. Am. Chem. Soc.-1980.-V.102.-№ 21.-P. 6621-6623.
- 9. Манн Ч. Электрохимические реакции в неводных системах / Ч. Манн, К. Барнес.-М.: Химия, 1974.-480 с.
- Tyler D.R. Electronic structures and spectra of trinuclear carbonyl complexes / D.R. Tyler, R.A. Levenson, H.B. Gray // J. Am. Chem. Soc.-1978.-V.100.-P.7888-
- Schilling B.R. M₃L₉(ligand) complexes / B.R. Schilling, R. Hoffmann // J. Amer. Chem. Soc.-1979.-V. 101.- № 3.-P. 3456-3467.
- Губин С.П. Превращение металлоцепь металлоцикл при восстановлении трехъядерных карбонилгалогенидов осмия / С.П. Губин, В.А. Трухачева, Г.В. Бурмакина, О.М. Ченцова, А.А. Иогансон // Изв. АН СССР. Сер. хим.-1981.- N 11.-C. 2423.
- Delly B. Xα calculations and spectroscopic studies of triruthenium and triosmium dodecacarbonyls / B. Delly, M.C. Manning, D.E. Ellis, J. Berkowitz, W.C. Trogler // Inorg. Chem.-1982.-V.21.-P.2247.
- 14. Иогансон А.А. Электрохимическое поведение и УФ-спектры комплексов триангуло-(Ph₃P)(L)PtFe₂(CO)₈ / А.А. Иогансон, Г.В. Бурмакина, В.А. Трухачева, А.И. Рубайло, Н.Г. Максимов, Н.А. Дейхина // Изв. АН СССР. Сер.хим.-1987.-№ 6.-С.1296-1300.
- 15. Nijhoff J. Remarkably stable radical anions derived from clusters [HOs₃(CO)₉(L)], L = orto-metallated αdiimine: a spectro-electrochemical study and theoretical rationalization / J. Nijhoff, F. Hartl, J.W.M. van Outersterp, D.J. Stufkens, M.J. Calhorda, L.F. Veiros // J. Organometall. Chem.-1999.-V.573.-P. 121-133.
- Wolley R.G. Electrons in transition metal cluster carbonyls. In.: Transition Metal Clusters / Ed. By B.F.G. Johnson. Chicherster: Wiley.-1980.-P.607-656.
- 17. Bedard R.L. Electrochemical analysis of bicapped triangular cobalt cyclopentadienyl clusters, $[Co_3(\eta^5-C_5H_5, Me_x)(\mu_3-X)(\mu_3-Y)]^n$ (x = 0, 1, 5), containing mixed π -acceptor X and π -donor Y capping ligands (X = CO, NO; Y = NSiMe_3, NC(O)NH_2, NH): pronounced variations in redox behavior as a function of coordinating ligands / R.L. Bedard and L.F. Dahl // J. Amer. Chem. Soc.-1986.-V.108.-P.5933-5942.
- Madach T. Redox-chemie ligandverbruckter dreikerncluster / T. Madach and H. Vahrenkamp // Chem. Ber.-1981.-V.114.-P. 505-512.
- 19. Rimmelin J. Comportement redox des clusters tetranucleaires Co₄(CO)_{12-2n}(Ph₂PCH₂PPh₂)_n; (n = 0, 1, 2) / J. Rimmelin, P. Lemoine, M. Gross, D. Montauzon // Nouv. J. Chem.-1983.-V. 7.-P. 453-459.
- 20. Rimmelin J. Electrochemical behavior of M₄(CO)₉(HC(PPh₂)₃) clusters (M₄ = Co₄, Co₂Rh₂, Rh₄) and electrocatalysed substitution in Co₄(CO)₉(HC(PPh₂)₃) / J. Rimmelin, P. Lemoine, M. Gross, A.A. Bahsoun, J.A. Osborn // Nouv. J. Chem.-1985.-V. 9.-P. 181-188.
- 21. Ferguson J.A. Multiple oxidation states in iron cluster compounds / J.A. Ferguson and T.J. Meyer // J.Chem.Soc.Chem.Commun.-1971.№ 12.-P.623-624.
- 22. Rimmelin J. The unusual electrochemical behavior of $[Co_8(CO)_{18}C]^2$ compared to $[M_6(CO)_{15}C]^2$ (M = Co, Rh) and $[Fe_6(CO)_{16}C]^2$ carbido clusters / J. Rimmelin, P. Lemoine, M. Gross, R. Mathieu, D. Montauzon // J. Organometall. Chem.-1986.-V.309.-P. 355-362.
- 23. Biani F.F. Redox behavior of [H_{6-n}Ni₃₈Pt₆(CO)₄₈]ⁿ⁻ (n = 4-6) anions: a series of metal carbonyl clusters displaying electron-sink features / F.F. Biani, C. Femoni, M.C. Iapalucci, G. Longoni, P. Zanello, A. Ceriotti // Inorg. Chem.-1999.-V.38.-P.3721-3724.

THERMODYNAMICS OF ELECTROCHEMICAL REACTIONS OF TRANSITION METAL CLUSTER COMPOUNDS

G.V. Burmakina, N.I. Pavlenko, E.A. Shor, A.I. Rubaylo

Thermodynamical characteristics of transition metal cluster compounds are estimated basing on the values of $E_{1/2}$ potentials measured for one-electron oxidation and reduction reactions. Obtained results are compared with data of electron spectroscopy and quantum chemical calculations. Connection between cluster structure and their thermodynamical characteristics is established.