Искать
Отображаемые элементы 1-10 из 16074
Investigation of thermal conductivity coefficient of aqueous suspension with carbon nanotubes
(2019-11)
mechanically and then processed by
ultrasonic apparatus “Volna” UZTA-0.4/22-OM (22±1.65 kHz, 400 W). The power control range was
30-100%. Ultrasound treatment time was 90 min.
An analysis of the colloidal stability of a suspension with carbon nanotubes...
with Siberian Federal University (No. 16.8368.2017). References [1] Radushkevich L V and Lukyanovich V M 1952 Zurn. Fisic. Chim. 26 88–95 [2] Iljima S and lchihashi T 1993 Nat. 363 603-605 [3] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev Lett. 87...
with Siberian Federal University (No. 16.8368.2017). References [1] Radushkevich L V and Lukyanovich V M 1952 Zurn. Fisic. Chim. 26 88–95 [2] Iljima S and lchihashi T 1993 Nat. 363 603-605 [3] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev Lett. 87...
Investigation of thermal conductivity coefficient of aqueous suspension with carbon nanotubes
(2020-11)
mechanically and then processed by
ultrasonic apparatus “Volna” UZTA-0.4/22-OM (22±1.65 kHz, 400 W). The power control range was
30-100%. Ultrasound treatment time was 90 min.
An analysis of the colloidal stability of a suspension with carbon nanotubes...
with Siberian Federal University (No. 16.8368.2017). References [1] Radushkevich L V and Lukyanovich V M 1952 Zurn. Fisic. Chim. 26 88–95 [2] Iljima S and lchihashi T 1993 Nat. 363 603-605 [3] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev Lett. 87...
with Siberian Federal University (No. 16.8368.2017). References [1] Radushkevich L V and Lukyanovich V M 1952 Zurn. Fisic. Chim. 26 88–95 [2] Iljima S and lchihashi T 1993 Nat. 363 603-605 [3] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev Lett. 87...
European environmental assistance to the region of Pskov in northwest Russia: sustainability, effectiveness and implications for environmental governance
(2018-03)
). Technically this usually means that
the more own resources are contributed by the recipient, the more effective the aid
project is (Zürn, 1998). Apparently, this analytical approach is also relatively easy way
to apply, as co-financing rates are usually...
; Zürn, 1998), in the perception of most recipients and other target groups, co-financing had very little to do with sustainability or effectiveness (interviews 6, 10, 14, 18, 19). Based on the evidence collected in Pskovskaya Oblast’, we partly...
; Zürn, 1998), in the perception of most recipients and other target groups, co-financing had very little to do with sustainability or effectiveness (interviews 6, 10, 14, 18, 19). Based on the evidence collected in Pskovskaya Oblast’, we partly...
Современные региональные интеграционые процессы в АСЕАН
(Сибирский федеральный университет, 2021)
ɦɟɠɩɪɚɜɢɬɟɥɶɫɬɜɟɧɧɵɯ
4
Deutsch, K.W. On Nationalism, World Regions, and the Nature of the West // Mobilization, Center –
Periphery Structures and Nation-Building. A Volume in Commemoration of Stein Rokkan / Ed. by Per...
17 Mitrany, D.A. The Functional Theory of Politics / D.A. Mitrany. – New York: St. Martin’s Press, 1976. – 201p. 18 Mattli, W. The Logic of Regional Integration: Europe and Beyond. / W. Mattli. – Cambridge: Cambridge University Press, 1999. – 216...
17 Mitrany, D.A. The Functional Theory of Politics / D.A. Mitrany. – New York: St. Martin’s Press, 1976. – 201p. 18 Mattli, W. The Logic of Regional Integration: Europe and Beyond. / W. Mattli. – Cambridge: Cambridge University Press, 1999. – 216...
Some Systems of Transcendental Equations
(Сибирский федеральный университет. Siberian Federal University, 2022)
(r1P : : : P rn) = ΓP (r) = {z : |ej(z)| = rj P j = 1P : : : P n}:
Let us start with a statement.
Lemma 1. The next equality is true
J
=
1
(2.i)n
∫
ΓP
1
z
1+11 · z
2+12 · · · z
n+1n
· df1
f1
∧ df2
f2
∧ : : : ∧ dfn
fn
=
=
(−1)n
(2.i)n
∫
Γ ~P
w
1...
+11 · w 2+12 · · ·w n+1n · df˜1 f˜1 ∧ df˜2 f˜2 ∧ : : : ∧ df˜n f˜n = (−1)nJ˜ : – 136 – Alexander M.Kytmanov, Olga V.Khodos Some Systems of Transcendental Equations For what follows, we need a generalized formula for transforming the Grothendieck residue...
+11 · w 2+12 · · ·w n+1n · df˜1 f˜1 ∧ df˜2 f˜2 ∧ : : : ∧ df˜n f˜n = (−1)nJ˜ : – 136 – Alexander M.Kytmanov, Olga V.Khodos Some Systems of Transcendental Equations For what follows, we need a generalized formula for transforming the Grothendieck residue...
Математическое моделирование динамики процессов тепловлажностной обработки капиллярно-пористых коллоидных дискретных материалов
(Сибирский федеральный университет. Siberian Federal University, 2008-06)
-
валась известная математическая модель, базирующаяся на системе нелинейных дифференци -
альных уравнений для нестационарного внутреннего влаго- и теплопереноса при сушке влаж -
ных тел:
�W�W
�Z�Z�U�U�H�H�O�O
�W�W�U�U �w�w
�w�w...
���������������� ���� �������� ���� ���� �w�w �w�w �w�w �w�w� � �w�w �w�w orx t x tC (1) �������������������� �w�w �w�w�w�w�w�w�w�w �w�w�w�w�w�w x txx mm �G�G�Z�Z�W�W�Z�Z , (2) ���� ���� ���� ���������������� �����w�w �w�w �f�f�f�f �H�Hx t w�i�ipw (3...
���������������� ���� �������� ���� ���� �w�w �w�w �w�w �w�w� � �w�w �w�w orx t x tC (1) �������������������� �w�w �w�w�w�w�w�w�w�w �w�w�w�w�w�w x txx mm �G�G�Z�Z�W�W�Z�Z , (2) ���� ���� ���� ���������������� �����w�w �w�w �f�f�f�f �H�Hx t w�i�ipw (3...
Assessment of Hybrid Method on Investigation of Dynamic Behaviour of Isotropic Rectangular Plates Resting on Two-Parameters Foundation
(Сибирский федеральный университет. Siberian Federal University, 2020-03)
is of constant thickness.
4) Thickness is normal to the mid-surface plane.
The governing equation for thin isotropic rectangular plate as reported by [14] is;
1
4 4 4 2
3
4 2 2 4 2
, , t , , t , , t , , t
2 , , t , , t 0,w p
w x y w x y...
w x y w x y D h k w x y k w x y x x y y t (1) 3 212 1 Eh , E , , max w x yW X Y w a b (2) , , , ,i tw x y t w x y e (3) 4 244 max2 2 , , ,pww p a k wa ka h k k D D D...
w x y w x y D h k w x y k w x y x x y y t (1) 3 212 1 Eh , E , , max w x yW X Y w a b (2) , , , ,i tw x y t w x y e (3) 4 244 max2 2 , , ,pww p a k wa ka h k k D D D...
Оптимальное управление электропотреблением техноценоза методами рангового анализа
(Сибирский федеральный университет. Siberian Federal University., 2009-06)
нормальному
закону. Для каждого участка можно записать уравнение [6-8]:
-1
d
�� /[�1 (���� )]=�- (p /2),
�1( ���� )
-1
�- (�2)
d
p
2
�2
- /2
0
1
x
�- (�2)= dx.
2��
e��
�<
kk k
�� W =W -W (r ),
k
r
�<
k
W (r )
�<
o kk
k
k
W-W (r)
�� W= .
W...
�> �@ �>�@ -1 �/ k�< kk -1 �/ k�G kk �- (p ) �1 W (r )=W(r )+ ; 2 �- (p ) �1 W (r )=W(r )- , 2 �� �� �� �� �� �� �� k W(r ) -1 �- (�2) �/ p k [�1 ] �� �^�^ 0 ��W= ��W(r )dr , �f �� �^ �� W(r ) �> 1 �� �^ �� W �� W= . r �� 1 �^ �� W (t); �� W (t...
�> �@ �>�@ -1 �/ k�< kk -1 �/ k�G kk �- (p ) �1 W (r )=W(r )+ ; 2 �- (p ) �1 W (r )=W(r )- , 2 �� �� �� �� �� �� �� k W(r ) -1 �- (�2) �/ p k [�1 ] �� �^�^ 0 ��W= ��W(r )dr , �f �� �^ �� W(r ) �> 1 �� �^ �� W �� W= . r �� 1 �^ �� W (t); �� W (t...
Integral Representation and the Computation of Multiple Combinatorial Sums from Hall’s Commutator Theory
(Сибирский федеральный университет. Siberian Federal University, 2021-01)
=max((;u−k+);v−k)
(
n− i− 1
k
)(
i
u− k + 1
)(
i
v − k
)
+
n−2∑
m=)
n−)∑
k=m+)
(
m
v
)(
k
u
)
: (3)
In [10], a combinatorial identity was proved that transforms the first multiple sum in (3) into
linear combination of binomial coefficients of the form
(
n
w...
) [ 2 −1 : : : 0 0 −1 2 : : : 0 0 ... ... : : : ... ... 0 0 : : : 2 −1 0 0 : : : −1 2 : 2. Proof of Theorem 1 To prove Theorem 1 we need several lemmas. Let &(w) [ &(w); w2; w+; w4) [ ∑ n;u;v∈N0;k∈N S(n; u; v; k)wn)w u 2w v +w k 4...
) [ 2 −1 : : : 0 0 −1 2 : : : 0 0 ... ... : : : ... ... 0 0 : : : 2 −1 0 0 : : : −1 2 : 2. Proof of Theorem 1 To prove Theorem 1 we need several lemmas. Let &(w) [ &(w); w2; w+; w4) [ ∑ n;u;v∈N0;k∈N S(n; u; v; k)wn)w u 2w v +w k 4...
On Transcendental Systems of Equations
(Сибирский федеральный университет. Siberian Federal University, 2021-04)
= (−1)nσβ+I P
i.e.
σβ+I =
∑
‖α‖6‖β‖+min(nPk1+...+kn)
(−1)‖α‖+nM
[
∆ ·fα
zβ+(α1+1)β1+...+(αn+1)βn
]
.
Consider a system of equations in three complex variables
f1(z1P z2P z3) = 1 + a1z1 = 0P
f2(z1P z2P z3) = 1 + w1z1 + w2z2 = 0P
f3(z1P z2P z3) = 1...
(r) 1 zβ1+11 z2z3 · a1w2c3dz1 ∧ dz2 ∧ dz3 (1 + a1z1)(1 + w1z1 + w2z2)(1 + c1z1 + c2z2 + c3z3) = = a1w2c3 β! · ∂ β ∂zβ1 · [ 1 (1 + a1z1)(1 + w1z1)(1 + c1z1) ]∣∣∣∣ z1=0 . To calculate the last derivative, we transform the expression 1 (1 + a1z1)(1 + w1z1...
(r) 1 zβ1+11 z2z3 · a1w2c3dz1 ∧ dz2 ∧ dz3 (1 + a1z1)(1 + w1z1 + w2z2)(1 + c1z1 + c2z2 + c3z3) = = a1w2c3 β! · ∂ β ∂zβ1 · [ 1 (1 + a1z1)(1 + w1z1)(1 + c1z1) ]∣∣∣∣ z1=0 . To calculate the last derivative, we transform the expression 1 (1 + a1z1)(1 + w1z1...