Искать
Отображаемые элементы 1-10 из 29834
Разделы и коллекции, соответствующие вашему запросу
Ресурсы, соответствующие вашему запросу
On the Solvability of a System of Two Multidimensional Loaded Parabolic Equations with the Cauchy Data
(Сибирский федеральный университет. Siberian Federal University., 2016-07)
.Frolenkov On the solvability of the system of two multidimensional . . .
1. Statement of the problem
In the space Zn of variables x)P : : : P xn choose ri different points �iki , (ki 5 )P ri) for each
variable xi (i 5 )P n): In the strip
G[(NT ] 5 {(tP x...
)|( 6 t 6 iP x 5 (x)P : : : P xn) ∈ Zn} consider the Cauchy problem for the system of loaded nonclassical parabolic equations ut(tP x) 5 n∑ i=) vi)(tP <u(t)P <v(t))uxixi + n∑ i=) wi)(tP <u(t)P <v(t))uxi + f)(tP xP uP vP <u(t)P <v(t))P vt(tP x) 5 n∑ i...
)|( 6 t 6 iP x 5 (x)P : : : P xn) ∈ Zn} consider the Cauchy problem for the system of loaded nonclassical parabolic equations ut(tP x) 5 n∑ i=) vi)(tP <u(t)P <v(t))uxixi + n∑ i=) wi)(tP <u(t)P <v(t))uxi + f)(tP xP uP vP <u(t)P <v(t))P vt(tP x) 5 n∑ i...
Порядки унипотентных элементов над полем ненулевой характеристики
(Сибирский федеральный университет, 2016)
,ЖОРДАНОВАМАТ-
РИЦА.
Цель работы — определить групповые порядки матричных унипотентных элементов
над основным полем K характеристики p отличной от нуля.
В результате исследований найдены групповые порядки всех клеток жордана для
небольших n и p, где n — размерность...
клетки жордана, а p — характеристика основ- ного поля. Сформулированы и доказаны леммы : о групповом порядке унипотентной жордановой клетки при p ≥ n ; о групповом порядке унипотентной жордановой матри- цы, состоящей из унипотентных жордановых клеток...
клетки жордана, а p — характеристика основ- ного поля. Сформулированы и доказаны леммы : о групповом порядке унипотентной жордановой клетки при p ≥ n ; о групповом порядке унипотентной жордановой матри- цы, состоящей из унипотентных жордановых клеток...
The Problem of Determining of the Source Function and of the Leading Coefficient in the Many-dimensional Semilinear Parabolic Equation
(Сибирский федеральный университет. Siberian Federal University, 2021)
is proved for
t∗ ∈ (0P i ]P i S 0P i − const. The condition for the dependence of t∗ on the constants of the
sufficiently smooth input data is formulated.
∗svpolyntseva@gmail.com https://orcid.org/0000-0002-8480-6612.
†ki.spirina@gmail.com https...
://orcid.org/0000-0002-3510-7292 c⃝ Siberian Federal University. All rights reserved – 497 – Svetlana V.Polyntseva, Kira I. Spirina The Problem of Determining of the Source Function . . . 1. Statement of the problem We consider in G[(,T ] = {(tP xP z) ∣∣ 0 6 t 6 iP...
://orcid.org/0000-0002-3510-7292 c⃝ Siberian Federal University. All rights reserved – 497 – Svetlana V.Polyntseva, Kira I. Spirina The Problem of Determining of the Source Function . . . 1. Statement of the problem We consider in G[(,T ] = {(tP xP z) ∣∣ 0 6 t 6 iP...
Ill-posed Boundary-value Problem for a System of Partial Differential Equations with Two Degenerate Lines
(Сибирский федеральный университет. Siberian Federal University, 2019-06)
and preliminaries
We consider the problem of finding a solution (u(xP yP t)P ,(xP yP t)) of the system of equations
(
U
Ut
− sign(x) U
Ux2
− sign(y) U
Uy2
)
,(xP yP t) = 0P(
U
Ut
− sign(x) U
Ux2
− sign(y) U
Uy2
)
u(xP yP t) = ,(xP yP t)
(1)
in the region Ω...
= {(xP yP t)| (−1 < x < 1)× (−1 < y < 1)× (0 < t < i <∞)P x ̸= 0P y ̸= 0} that satisfy the following conditions: initial conditions u(xP yP 0) = f(xP y)P ,(xP yP 0) = <(xP y)P (xP y) ∈ ∏ = {−1 6 x 6 1P −1 6 y 6 1} P (2) �kudratillo52@mail.ru ykomilyashin...
= {(xP yP t)| (−1 < x < 1)× (−1 < y < 1)× (0 < t < i <∞)P x ̸= 0P y ̸= 0} that satisfy the following conditions: initial conditions u(xP yP 0) = f(xP y)P ,(xP yP 0) = <(xP y)P (xP y) ∈ ∏ = {−1 6 x 6 1P −1 6 y 6 1} P (2) �kudratillo52@mail.ru ykomilyashin...
Difference Equations and Generating Functions for some Lattice Path Problems
(Сибирский федеральный университет. Siberian Federal University, 2019-10)
, lattice path.
DOI: 10.17516/1997-1397-2019-12-5-551-559.
For z = (z)P :::P zN ) we introduce the ring of polynomials C[z], the field of rational functions
C(z) and C[[z]] - the ring of formal power series in z)P :::P zN , where zx = zx1) : : : : :z
xN
N...
. If f is a function on ZN> it is identified as a function on ZN by setting it equal to zero on the complement ZN\ZN> : A linear finite difference equation is an equation of the form∑ y∈h xy(x)f(x− y) = g(x)P x ∈ ZN P (1) where h ⊂ ZN is finite, xy : ZN...
. If f is a function on ZN> it is identified as a function on ZN by setting it equal to zero on the complement ZN\ZN> : A linear finite difference equation is an equation of the form∑ y∈h xy(x)f(x− y) = g(x)P x ∈ ZN P (1) where h ⊂ ZN is finite, xy : ZN...
On some Sufficient Condition for the Equality of Multi-clone and Super-clone
(Сибирский федеральный университет. Siberian Federal University, 2018-03)
–
Nikolay A.Peryazev, Ivan K. Sharankhaev On some Sufficient Condition for the Equality . . .
multi-operations on A is described as
bA =
∪
n>(
bnA:
Multi-operation �n of dimension n is described as empty operation if for all elements a)P : : : P an
of A...
relation �n(a)P : : : P an) = ∅ is true. Multi-operation .n of dimension n is described as a complete poperation if for all elements a)P : : : P an of A relation .n(a)P : : : P an) = A is true. Multi-operation eni of dimension n is described as a projection...
relation �n(a)P : : : P an) = ∅ is true. Multi-operation .n of dimension n is described as a complete poperation if for all elements a)P : : : P an of A relation .n(a)P : : : P an) = A is true. Multi-operation eni of dimension n is described as a projection...
Measurement of Ion Association Constants from Decrease of Peak Areas by Capillary Electrophoresis Technique with Indirect Spectrophotometric Detection
(Сибирский федеральный университет. Siberian Federal University, 2008-09)
areas relative to peak area of internal standard:
1
,/1 /1
st
i
i
st
i
st
i S
S
z
zS
�c�c
�c�c����
������������
����
������������
���� ����
����
����� � �c�c�c�c
�P�P
�P�P
,
i
i
i t
SS � � �c�c
,���� �'�'
j j
j
i...
t AS ,,, �������� ���� ���� ������������ ���� ��������� � ��������� � mark eff i eff �j�j t l t l U l�P�P�P�P�P�P�P�P .stiii C ,1][ 1 2 �r�r ���� ���� ����� � �J�Jz i ass M kK , , 0 ���� �������� ����� � j i BGE i Cl �K�K �P�P �P�P�P�P�X�X ���� ���� j iC ,�P�P .ii t iC�'�' �W�W iC , zone i i t i l x...
t AS ,,, �������� ���� ���� ������������ ���� ��������� � ��������� � mark eff i eff �j�j t l t l U l�P�P�P�P�P�P�P�P .stiii C ,1][ 1 2 �r�r ���� ���� ����� � �J�Jz i ass M kK , , 0 ���� �������� ����� � j i BGE i Cl �K�K �P�P �P�P�P�P�X�X ���� ���� j iC ,�P�P .ii t iC�'�' �W�W iC , zone i i t i l x...
The Critical Curves of a Doubly Nonlinear Parabolic Equation in Non-divergent form with a Source and Nonlinear Boundary Flux
(Сибирский федеральный университет. Siberian Federal University, 2019-02)
with a source
Uu
Ut
= uk
U
Ux
(
um−1
∣∣∣∣UuUx
∣∣∣∣p−2 UuUx
)
+ u� ; (x; t) ∈ R+ × (0;+∞) : (1)
Initial condition and nonlinear boundary condition are
−um−1
∣∣∣∣UuUx
∣∣∣∣p−2 UuUx (0; t) = uq (0; t) ; t ∈ (0;+∞) ; (2)
u (x; 0) = u0 (x) ; x ∈ R+ (3)
where p...
weak solution to problem (1)–(3) if u satisfies the following conditions 1) u ∈ a∞ (ΩT ) ; ut ∈ a1 (ΩT ) ; ∇u ∈ aploc (ΩT ) where ΩT = R+× (0; i ), 2) T∫ 0 ∫ Ω { ut<− um−1|∇u|p−1∇u∇ ( uk< )− u�<} yxyt+ ∫ Ω u0< (x; 0) = 0, 3) u0 (x) > 0 for all test...
weak solution to problem (1)–(3) if u satisfies the following conditions 1) u ∈ a∞ (ΩT ) ; ut ∈ a1 (ΩT ) ; ∇u ∈ aploc (ΩT ) where ΩT = R+× (0; i ), 2) T∫ 0 ∫ Ω { ut<− um−1|∇u|p−1∇u∇ ( uk< )− u�<} yxyt+ ∫ Ω u0< (x; 0) = 0, 3) u0 (x) > 0 for all test...
On Some Maximal Clone of Partial Ultrafunctions on a Two-element Set
(Сибирский федеральный университет. Siberian Federal University, 2017-05)
-element set.
1. Basic concepts and definitions
Let E2 = {(P )} и F = {∅P {(}P {)}P {(P )}}. We define the following sets of functions:
e ∗2;n = {f |f 2 En2 → F}P e ∗2 =
∪
n
e ∗2;nP
e2;n = {f |f ∈ e ∗2;n end |f(~�)| = ) for every ~� ∈ En2 }P e2 =
∪
n
e2;n...
Two-element Set By definition [9, 10] we believe that the superposition f(f)(x)P : : : P xm)P : : : P fn(x)P : : : P xm))P where fP f)P : : : P fn ∈ e ∗2 , represents some function g(x)P : : : P xm), if for every (�)P : : : P �m) ∈ Em2 g(�)P : : : P �m...
Two-element Set By definition [9, 10] we believe that the superposition f(f)(x)P : : : P xm)P : : : P fn(x)P : : : P xm))P where fP f)P : : : P fn ∈ e ∗2 , represents some function g(x)P : : : P xm), if for every (�)P : : : P �m) ∈ Em2 g(�)P : : : P �m...