Искать
Отображаемые элементы 1-10 из 1379
Global in Space Regularity Results for the Heat Equation with Robin-Neumann Type Boundary Conditions in Time-varying Domains
(Сибирский федеральный университет. Siberian Federal University, 2019-06)
in revised form 18.01.2019, accepted 06.03.2019
This article deals with the heat equation
@tu− @2xu = f in D; D =
{
(t; x) ∈ R2 2 a < t < b; (t) < x < +∞}
with the function satisfying some conditions and the problem is supplemented with boundary conditions...
and preliminaries This work is devoted to the analysis of the following one-dimensional second order parabolic problem @tu− @2xu = f ∈ a2(Ω∞); @xu+ �u|Γ) = 0; @xu|Γ2 = 0; (1) where a2(Ω∞) stands for the space of square-integrable functions on Ω...
and preliminaries This work is devoted to the analysis of the following one-dimensional second order parabolic problem @tu− @2xu = f ∈ a2(Ω∞); @xu+ �u|Γ) = 0; @xu|Γ2 = 0; (1) where a2(Ω∞) stands for the space of square-integrable functions on Ω...
On Solvability of one Class of Nonlinear Integral-differential Equation with Hammerstein Non-compact Operator Arising in a Theory of Income Distribution
(Сибирский федеральный университет. Siberian Federal University., 2015-11)
)
Khach82@rambler.ru
c⃝ Siberian Federal University. All rights reserved
– 416 –
A.Kh.Khachatryan, Kh.A Khachatryan, Tigran H.Sardaryan On Solvability of one Class of Nonlinear ...
We assume that there exists a number >0, such that
♯ (x;u) u 0 (x;u...
) > 0; (x;u) 2 R+ R+: (7) Problem (1)–(2) has direct application in econometrics, namely, in the theory of income distribution in one product economics (see. [1–4]). Unknown function f (x) plays a role of distribution density, i.e. f (x)dx is a number...
) > 0; (x;u) 2 R+ R+: (7) Problem (1)–(2) has direct application in econometrics, namely, in the theory of income distribution in one product economics (see. [1–4]). Unknown function f (x) plays a role of distribution density, i.e. f (x)dx is a number...
Mathematical Model for Calculation of Oscillations in the Main Bearing Frame of Railcar with Changing Stiffness and Physical Parameters
(Сибирский федеральный университет. Siberian Federal University, 2017-08)
to other components) by analogy with [9, 10].
( ) ( ) ( )
( ) ( )
3
3
2
2
2
2
2
,1
)(2
1)(
,
),(
)(
,)(,
X
tXW
R
XEI
RX
XIEtXN
X
tXUXEF
X
tXU
X
XFE
t
tXUXm
X
X
Д
K
∂
∂+⋅∂
∂+=
=∂
∂−∂
∂⋅∂
∂−∂
∂
; (5...
to other components) by analogy with [9, 10]. ( ) ( ) ( ) ( ) ( ) 3 3 2 2 2 2 2 ,1 )(2 1)( , ),( )( ,)(, X tXW R XEI RX XIEtXN X tXUXEF X tXU X XFE t tXUXm X X Д K ∂ ∂+⋅∂ ∂+= =∂ ∂−∂ ∂⋅∂ ∂−∂ ∂ ; (5...
to other components) by analogy with [9, 10]. ( ) ( ) ( ) ( ) ( ) 3 3 2 2 2 2 2 ,1 )(2 1)( , ),( )( ,)(, X tXW R XEI RX XIEtXN X tXUXEF X tXU X XFE t tXUXm X X Д K ∂ ∂+⋅∂ ∂+= =∂ ∂−∂ ∂⋅∂ ∂−∂ ∂ ; (5...
Данные сборки митохондриального генома Larix sibirica
nad4_exon4; scaffold_16; 170398..170484. Работа выполнена в лаборатории лесной геномики СФУ.
Soft modes condensation in Raman spectra of (Pb–La)(Zr–Sn–Ti)O3 ceramics
(2019-03)
,†
Xiaoyong Wei,‡ Yujun Feng,‡ Ran Xu,‡ and Tian Zhao‡
†Kirensky Institute of Physics & Siberian Federal University, Krasnoyarsk, 660036, Russia
‡Electronic Materials Research Laboratory & Intl. Center for Dielectric Research, Xi’an, 710049, China
†vtyurin...
at the transition point that supposes considerable inter mode interactions via dampings. References 1M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977). 2Z. Xu, Y.J. Feng, S.G. Zheng...
at the transition point that supposes considerable inter mode interactions via dampings. References 1M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977). 2Z. Xu, Y.J. Feng, S.G. Zheng...
Soft modes condensation in Raman spectra of (Pb-La)(Zr-Sn-Ti)O3 ceramics
(2019-06)
. Oreshonkov,†
Xiaoyong Wei,‡ Yujun Feng,‡ Ran Xu,‡ and Tian Zhao‡
†Kirensky Institute of Physics & Siberian Federal University, Krasnoyarsk, 660036, Russia
‡Electronic Materials Research Laboratory & Intl. Center for Dielectric Research, Xi’an, 710049...
(Clarendon Press, Oxford, 1977). 2Z. Xu, Y.J. Feng, S.G. Zheng, A. Jin, F. L. Wang, and X. Yao, J. Appl. Phys. 92 (5), 2663 (2002). 3W. D. Dong, J. C. Valadez, J. A. Gallagher, H. R. Jo, R. Sahul, W. Hackenberger, and C. S. Lynch, J. Appl. Phys. 117...
(Clarendon Press, Oxford, 1977). 2Z. Xu, Y.J. Feng, S.G. Zheng, A. Jin, F. L. Wang, and X. Yao, J. Appl. Phys. 92 (5), 2663 (2002). 3W. D. Dong, J. C. Valadez, J. A. Gallagher, H. R. Jo, R. Sahul, W. Hackenberger, and C. S. Lynch, J. Appl. Phys. 117...
On some Inverse Problem for a Parabolic Equation with a Parameter
(Сибирский федеральный университет. Siberian Federal University., 2015-08)
boundary-value problems for equation systems with small parame-
ters [8,9].
1. Problem formulation
We consider the boundary-value problem
∂u(t,x,y)
∂t = λ∆xu(t,x,y) +µ(t,y)f(t,x,y), (1)
u(0,x,y) = u0(x,y), (2)
u(t,x,y)|x∈∂Ω = 0, (3)
u(t,x,y)|x=y = φ...
for the Cauchy problem ∂u(t,x,y) ∂t = λ∆xu(t,x,y) +µ(t,y)f ∗(t,x,y), (12) u(0,x,y) = u∗0(x,y), (13) u(t,x,y)|x=y = φ(t,y), (14) for t∈ [0,T], x∈ Rn, y ∈D ⊂ Rn. After substitution x = y, y ∈D to (12) one can find µ(t,y): µ(t,y) = 1f∗(t,y,y) (φt(t,y)−λ∆xu(t,y,y)), y...
for the Cauchy problem ∂u(t,x,y) ∂t = λ∆xu(t,x,y) +µ(t,y)f ∗(t,x,y), (12) u(0,x,y) = u∗0(x,y), (13) u(t,x,y)|x=y = φ(t,y), (14) for t∈ [0,T], x∈ Rn, y ∈D ⊂ Rn. After substitution x = y, y ∈D to (12) one can find µ(t,y): µ(t,y) = 1f∗(t,y,y) (φt(t,y)−λ∆xu(t,y,y)), y...
Dielectric relaxation and phase transition behavior of (1–x)Pb(Zn1/3Nb2/3)O3-xBaTiO3 binary solid solutions
(2018-07)
relaxation and phase transition behavior of (1-
x)Pb(Zn1/3Nb2/3)O3-xBaTiO3 binary solid solutions
Qiang Gao, Qingyuan Hu, Li Jin, M.V. Gorev, D.S. Chezganov, E.O. Vlasov, Huarong Zeng,
Luyang Zhao, Yu Cui, Zhuo Xu, Xiaoyong Wei
aElectronic Materials Research...
Global in Time Results for a Parabolic Equation Solution in Non-rectangular Domains
(Сибирский федеральный университет. Siberian Federal University, 2020-05)
) + ‖∂tw‖2L2(D) +
2∑
j=1
∥∥∂jxw∥∥2L2(D) .
We consider the problem: to find a function u ∈ H1,2(D) that satisfies the equation
∂tu− x(t)∂2xu = f a.e. on D (1.1)
and the boundary conditions
u|Γ1 = ∂xu+ β2u|Γ2 = 0P (1.2)
where f ∈ a2(D) and the coefficient x...
> 0. Fig. 1. The unbounded non-rectangular domain D Problem (1.1)–(1.2) modelizes, for instance, the lateral diffusion of a pollutant in a flow of a river with variable width. Note that the Robin type condition ∂xu+ β2u|Γ2 = 0P means for instance...
> 0. Fig. 1. The unbounded non-rectangular domain D Problem (1.1)–(1.2) modelizes, for instance, the lateral diffusion of a pollutant in a flow of a river with variable width. Note that the Robin type condition ∂xu+ β2u|Γ2 = 0P means for instance...
О разложении гиперграфа кликовыми минимальными сепараторами
(Сибирский федеральный университет. Siberian Federal University., 2012-01)
терминологию и обозначения, приня-
тые в [6,7]. Пусть задан (n,m)-гиперграф H = (X,U), где X = {x1,...,xn} emdash.cyr конечное
множество вершин и U = {u1,...,um} emdash.cyr конечное семейство ребер гиперграфа, при этом
n = |X| greaterorequalslant 1,m = |U...
| greaterorequalslant 1 и всякое ребро гиперграфа emdash.cyr некоторое подмножество множества X. Пусть U(x) emdash.cyr множество ребер, инцидентных в H вершине x ∈ X, а X(u) – множество всех вершин, инцидентных ребру u ∈ U. Тогда число |U(x)| определяет степень вершины...
| greaterorequalslant 1 и всякое ребро гиперграфа emdash.cyr некоторое подмножество множества X. Пусть U(x) emdash.cyr множество ребер, инцидентных в H вершине x ∈ X, а X(u) – множество всех вершин, инцидентных ребру u ∈ U. Тогда число |U(x)| определяет степень вершины...