Искать
Отображаемые элементы 1-10 из 22974
Алгоритм управляемой имитации сети Петри
(Сибирский федеральный университет. Siberian Federal University., 2010-09)
�
.
�> �@ �>�@ �> �@kuDkk
*
1 ����� ��
��
�P�P .
�> �@ �>�@ �> �@kuDkk
*
1 ����� ��
��
�P�P .
�W�W�W �'��� .
.
где δ
j
– время выполнения j-го перехода.
�>�@kkuD �P�d��
��
][
][k�P
]1[ ��k�P
1��
�� zI
][
*
ku][ku
1��
�� zI
�P�_�e�v
�m�i�j�Z�\�e�_�g�b�y
])[],1[(
*
kkux...
�P�M ��� ])[],[( kxkufN� I D �<�h�a�f�m�s�_�g�b�y �G�_�c�j�h�k�_�l�_�\�h�c �d�h�g�l�j�h�e�e�_�j �K�_�l�v �I�_�l�j�b ][kx ]1[ * ��ku �A�Z�i�m�k�d �g�_�c�j�h�k�_�l�b Рис. 1. Структура системы оптимального управления с нейросетевым контроллером...
�P�M ��� ])[],[( kxkufN� I D �<�h�a�f�m�s�_�g�b�y �G�_�c�j�h�k�_�l�_�\�h�c �d�h�g�l�j�h�e�e�_�j �K�_�l�v �I�_�l�j�b ][kx ]1[ * ��ku �A�Z�i�m�k�d �g�_�c�j�h�k�_�l�b Рис. 1. Структура системы оптимального управления с нейросетевым контроллером...
Asymptotic Behavior at Infinity of the Dirichlet Problem Solution of the 2k Order Equation in a Layer
(Сибирский федеральный университет. Siberian Federal University., 2014-07)
of Economics, Statistics and Informatics,
Nezhinskaya, 7, Moscow, 119501
Russia
Received 01.02.2014, received in revised form 01.03.2014, accepted 20.04.2014
For the operator (−∆)ku(x) + ν2ku(x) with x ∈ Rn(n greaterorequalslant 2,k greaterorequalslant 2...
) an explicit fundamental solution is obtained, and for the equation (−∆)ku(x) + ν2ku(x) = f(x) (for f ∈ C∞(Rn) with compact support) the leading term of an asymptotic expansion at infinity of a solution is computed. The same result is obtained for the solution...
) an explicit fundamental solution is obtained, and for the equation (−∆)ku(x) + ν2ku(x) = f(x) (for f ∈ C∞(Rn) with compact support) the leading term of an asymptotic expansion at infinity of a solution is computed. The same result is obtained for the solution...
Ku-band Antenna Array Element Based on Fabry-Perot Cavity
(2016-12)
-Type text/plain; charset=UTF-8
Ku-band Antenna Array Element Based on Fabry-
Perot Cavity
A. M. Alexandrin, S. V. Polenga1, A. V. Stankovsky, A. D. Nemshon, Y. A. Litinskaya, A. D. Hudonogova,
Yu. P. Salomatov
Institute of Engineering Physics...
stream_source_info ku-band_antenna_array_element_based_on_fabryperot.pdf.txt stream_content_type text/plain stream_size 11125 Content-Encoding UTF-8 stream_name ku-band_antenna_array_element_based_on_fabryperot.pdf.txt Content...
stream_source_info ku-band_antenna_array_element_based_on_fabryperot.pdf.txt stream_content_type text/plain stream_size 11125 Content-Encoding UTF-8 stream_name ku-band_antenna_array_element_based_on_fabryperot.pdf.txt Content...
Ku-band antenna array element based on Fabry-Perot cavity
(2017-05)
stream_source_info 07931338.pdf.txt
stream_content_type text/plain
stream_size 11125
Content-Encoding UTF-8
stream_name 07931338.pdf.txt
Content-Type text/plain; charset=UTF-8
Ku-band Antenna Array Element Based on Fabry...
- Perot Cavity A. M. Alexandrin, S. V. Polenga1, A. V. Stankovsky, A. D. Nemshon, Y. A. Litinskaya, A. D. Hudonogova, Yu. P. Salomatov Institute of Engineering Physics and Radioelectronics Siberian Federal University 660074, Kirensky street 28...
- Perot Cavity A. M. Alexandrin, S. V. Polenga1, A. V. Stankovsky, A. D. Nemshon, Y. A. Litinskaya, A. D. Hudonogova, Yu. P. Salomatov Institute of Engineering Physics and Radioelectronics Siberian Federal University 660074, Kirensky street 28...
Ku-band Antenna Array Element Based on Fabry-Perot Cavity
(2016-12)
-band_antenna_array_element_based_on_fabry-perot_cavity.pdf.txt
Content-Type text/plain; charset=UTF-8
Ku-band Antenna Array Element Based on Fabry-
Perot Cavity
A. M. Alexandrin, S. V. Polenga1, A. V. Stankovsky, A. D. Nemshon, Y. A. Litinskaya, A. D. Hudonogova,
Yu. P. Salomatov
Institute of Engineering...
stream_source_info ku-band_antenna_array_element_based_on_fabry-perot_cavity.pdf.txt stream_content_type text/plain stream_size 11125 Content-Encoding UTF-8 stream_name ku...
stream_source_info ku-band_antenna_array_element_based_on_fabry-perot_cavity.pdf.txt stream_content_type text/plain stream_size 11125 Content-Encoding UTF-8 stream_name ku...
A Subarray for Ku-Band High-Gain Scanning Antenna Based on CTS Waveguide
(2019-06)
A subarray for Ku-band wide-angle scanning antenna array based on waveguide continuous transverse stubs (CTS) is presented. The proposed antenna array consists of 2 subarrays, subarray consists of 16 horn radiators. The subarray based on waveguide...
Existence Criteria in Some Extremum Problems Involving Eigenvalues of Elliptic Operators
(Сибирский федеральный университет. Siberian Federal University., 2016-03)
,
in order to emphasize this dependence, we simply write ( [u];y[u]).
It is a general fact (see [2]) that under conditions (1)–(4) this problem has a countable set
of eigenvalues such that dB < 1[u] 6 2[u] 6 ::: 6 k[u] 6 :::; limk!1 k[u] = 1;
each of them...
] = min Y6V; dimY=k max y2Ynf#g Au(y;y) Bu(y;y); k[u] = maxY6V; codimY=k 1 min y2Ynf#g Au(y;y) Bu(y;y): – 39 – Vasily Yu.Goncharov Existence Criteria in Some Extremum Problems Involving Eigenvalues... Notice that, for each u 2 U, the bilinear form Cu...
] = min Y6V; dimY=k max y2Ynf#g Au(y;y) Bu(y;y); k[u] = maxY6V; codimY=k 1 min y2Ynf#g Au(y;y) Bu(y;y): – 39 – Vasily Yu.Goncharov Existence Criteria in Some Extremum Problems Involving Eigenvalues... Notice that, for each u 2 U, the bilinear form Cu...
Accelerated Phase-lock-loop Frequency Control Methods of User’s Equipment in Perspective Radio Navigation Systems
(Сибирский федеральный университет. Siberian Federal University, 2008-09)
ith ms noise-im mu nit y
investigation / E.V. Ku z min, V.N. Bondaren ko // Moder n problems of radio elect ronics, 2006. –
P. 53 – 56. (in Russian).
4. Jod zishsk y M.I. Digit al phase sy nch ronization systems / M.I. Jod...
nificant disadvant age – comput ational complexit y, therefore, in the foreseeable f ut u re it can’t be used for preprocessing algorithms. Due to limits in comput ational tech nolog y, it’s necessar y to investigate phase t rack ing algor...
nificant disadvant age – comput ational complexit y, therefore, in the foreseeable f ut u re it can’t be used for preprocessing algorithms. Due to limits in comput ational tech nolog y, it’s necessar y to investigate phase t rack ing algor...
Совершенствование методов проектирования фильтрокомпенсирующих устройств для электроэнергетических систем с нелинейными резкопеременными нагрузками
(Сибирский федеральный университет, 2022-06-17)
составляющих в тяговой сети 25 кВ, %
Коэффициенты гармонических составляющих в тяговой сети 25 кВ
Длина
ВЛ
KU(3)
KU(5)
KU(7)
KU(9)
KU(11)
KU(13)
KU(15)
KU(17)
∑KU
100 км
11,94
11,11
12,54
12,33
13,26
29,33
3,54
1,21
50,19
50 км
10 км
10...
обмотке тягового трансформатора 220 кВ, % Длина ВЛ Коэффициенты гармонических составляющих на первичной обмотке тягового трансформатора 220 кВ KU(3) KU(5) KU(7) KU(9) KU(11) KU(13) KU(15) KU(17) ∑KU 100 км 1,14 1,08 1,28 1,35 1,58 3,08 2,99 0...
обмотке тягового трансформатора 220 кВ, % Длина ВЛ Коэффициенты гармонических составляющих на первичной обмотке тягового трансформатора 220 кВ KU(3) KU(5) KU(7) KU(9) KU(11) KU(13) KU(15) KU(17) ∑KU 100 км 1,14 1,08 1,28 1,35 1,58 3,08 2,99 0...
On a Spectral Problem for Convection Equations
(Сибирский федеральный университет. Siberian Federal University, 2022-02)
for convective motion in the Oberbeck–Boussinesq approximation
has the form [1]
ut + (u · ▽)u+ 1
.
▽ p = ν∆u+ gβθeO (1.1)
xivu = 0O (1.2)
θt + u · ▽θ = χ∆θ. (1.3)
Here u=(u1(xO yO zO t)O u2(xO yO zO t)O u3(xO yO zO t)) is the velocity vector, p(xO yO zO t...
) is the mod- ified pressure, θ(xO yO zO t) is temperature; .O νO gO βO χ are density, kinematic viscosity, gravity acceleration, the coefficients of thermal expansion and thermal diffusivity of the medium, respec- tively. e = (0O 0O−1) is unit vector. Thus...
) is the mod- ified pressure, θ(xO yO zO t) is temperature; .O νO gO βO χ are density, kinematic viscosity, gravity acceleration, the coefficients of thermal expansion and thermal diffusivity of the medium, respec- tively. e = (0O 0O−1) is unit vector. Thus...