Искать
Отображаемые элементы 1-10 из 1007
Organization Features of the Mitochondrial Genome of Sunflower (Helianthus annuus L.) with ANN2-Type Male-Sterile Cytoplasm
(2019-10)
This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male...
New method of training two-layer sigmoid neural networks using regularization
(2019-06)
Networks
(ANN). We introduce the concept of the working area of a neuron for sigmoid ANNs in the form
of a band in the attribute space, its width and location associated with the center line of the band
to a fixed point. We define of the centers...
and widths of the working areas of neurons by analogy to the radial ANNs. On this basis, an algorithm for selecting the initial approximation of network parameters, ensuring uniform coverage of the data area with neuron working areas was developed. Network...
and widths of the working areas of neurons by analogy to the radial ANNs. On this basis, an algorithm for selecting the initial approximation of network parameters, ensuring uniform coverage of the data area with neuron working areas was developed. Network...
The Multi-Objective Optimization of Complex Objects Neural Network Models
(2016-08)
of the structure
and functions of biological brain cortex. Artificial Neural
Network (ANN) represents an aggregate of interrelated
Formal Neurons (FN), each of them representing a sim-
plified model of a biological neuron, a fundamental
structural...
and functional unit of the nervous system. ANN classification can be based upon different attri- butes, for instance: - type of communication topology existing between the neurons of the network; - signal propagation characteristics or signal type; - type...
and functional unit of the nervous system. ANN classification can be based upon different attri- butes, for instance: - type of communication topology existing between the neurons of the network; - signal propagation characteristics or signal type; - type...
ПРИМЕНЕНИЕ КОЛЛЕКТИВОВ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ РЕШЕНИЯ ЗАДАЧ КЛАССИФИКАЦИИ
(Сибирский федеральный университет, 2014)
тестирования на данных задачах.
Таблица 3 – результаты тестирования
Алгоритм Ирисы Вина Кредиты
(Австралия)
Кредиты
(Германия)
SC_GP+ANN 6,3% 3,9% 11,3% 23%
SC_GP+ANN+E 2,5% 2,4% 9,9% 20%
В таблице 2 представлена относительная ошибка классификации на...
тестовой выборке. В данной таблице SC_GP+ANN означает, что использовалась ИНС сгенерированная самоконфигурируемым алгоритмом генетического программирования. Алгоритм SC_GP+ANN+E использовал коллектив ИНС. Из представленных выше результатов видно, что...
тестовой выборке. В данной таблице SC_GP+ANN означает, что использовалась ИНС сгенерированная самоконфигурируемым алгоритмом генетического программирования. Алгоритм SC_GP+ANN+E использовал коллектив ИНС. Из представленных выше результатов видно, что...
Stomatal Conductance Increases with Rising Temperature
(2017-08)
ISSN: (Print) 1559-2324 (Online) Journal homepage: http://www.tandfonline.com/loi/kpsb20
Stomatal Conductance Increases with Rising
Temperature
Josef Urban, Miles Ingwers, Mary Anne McGuire & Robert O. Teskey
To cite this article: Josef Urban, Miles...
Ingwers, Mary Anne McGuire & Robert O. Teskey (2017): Stomatal Conductance Increases with Rising Temperature, Plant Signaling & Behavior, DOI: 10.1080/15592324.2017.1356534 To link to this article: http://dx.doi.org/10.1080/15592324.2017.1356534 Accepted...
Ingwers, Mary Anne McGuire & Robert O. Teskey (2017): Stomatal Conductance Increases with Rising Temperature, Plant Signaling & Behavior, DOI: 10.1080/15592324.2017.1356534 To link to this article: http://dx.doi.org/10.1080/15592324.2017.1356534 Accepted...
The Variety of Nilpotent Tortkara Algebras
(Сибирский федеральный университет. Siberian Federal University, 2019-04)
).
We also call the set Ann(�) = {x ∈ A : � (xPA) = 0} the annihilator of �. Recall that the
annihilator of an algebra A is defined as the ideal Ann (A) = {x ∈ A : xA = 0}, and observe
that Ann (A�) = Ann(�) ∩Ann (A)⊕ VO
We now state the following key...
result: Lemma 1.1. Let A be an n-dimensional Tortkara algebra with dim(Ann(A)) = m ̸= 0. Then, there exists (up to an isomorphism) a unique (n − m)-dimensional Tortkara algebra A′ and a bilinear map � ∈ Z2(APV) with Ann(A)∩Ann(�) = 0, where V is a vector...
result: Lemma 1.1. Let A be an n-dimensional Tortkara algebra with dim(Ann(A)) = m ̸= 0. Then, there exists (up to an isomorphism) a unique (n − m)-dimensional Tortkara algebra A′ and a bilinear map � ∈ Z2(APV) with Ann(A)∩Ann(�) = 0, where V is a vector...
The Variety of Nilpotent Tortkara Algebras
(2019-02)
the set Ann(θ) = {x ∈ A : θ (x,A) = 0} the annihilator of θ. Recall that the
annihilator of an algebra A is defined as the ideal Ann (A) = {x ∈ A : xA = 0}, and observe
that Ann (Aθ) = Ann(θ) ∩Ann (A)⊕ V.
We now state the following key result:
Lemma 1...
..1 Let A be an n-dimensional tortkara algebra with dim(Ann(A)) = m 6= 0. Then, there exists (up to an isomorphism) a unique (n − m)-dimensional tortkara algebra A′ and a bilinear map θ ∈ Z2(A,V) with Ann(A)∩Ann(θ) = 0, where V is a vector space...
..1 Let A be an n-dimensional tortkara algebra with dim(Ann(A)) = m 6= 0. Then, there exists (up to an isomorphism) a unique (n − m)-dimensional tortkara algebra A′ and a bilinear map θ ∈ Z2(A,V) with Ann(A)∩Ann(θ) = 0, where V is a vector space...
A heuristic neural network model in the research of properties of evolutionary trajectories
(2019-06)
and origin. ... The origin, structure and
function can no longer be separated”.
The heuristic model should have a simply described structure that implements a certain function
that arose during the evolutionary process. Artificial neural networks (ANN...
the evolutionary process in biology. Why can we consider the learning process of ANN similar to the evolution process of living beings? Evolution is the process of changing the structure of a system in accordance with a certain functional criterion of optimality...
the evolutionary process in biology. Why can we consider the learning process of ANN similar to the evolution process of living beings? Evolution is the process of changing the structure of a system in accordance with a certain functional criterion of optimality...
Cooperation of Bio-inspired and Evolutionary Algorithms for Neural Network Design
(Сибирский федеральный университет. Siberian Federal University, 2018-06)
harder optimization prob-
lems related to designing the structure of artificial neural network (ANN) based classifiers and
adjusting the weight coefficients.
Thus, the rest of the paper is organized as follows. Firstly, a description of the proposed...
optimization techniques (COBRA and DE+PSO) is presented. Then the procedure of the neural network design is explained. Following this, experimental results are demonstrated, whereby the workability of the meta-heuristics is demonstrated with the ANN...
optimization techniques (COBRA and DE+PSO) is presented. Then the procedure of the neural network design is explained. Following this, experimental results are demonstrated, whereby the workability of the meta-heuristics is demonstrated with the ANN...
Luciferase-based bioassay for rapid pollutants detection and classification by means of multilayer artificial neural networks
(2017-04)
learning methods for signal processing.
There are two mainstream machine learning methods suitable for classifi-
cation and regression analysis: artificial neural networks (ANN) and support
vector machines (SVM). Detailed comparison of these competitive...
applicability of the welled-studied multilayer perceptron (MLP) architecture with computationally cheap sigmoid activation functions and the backpropagation method for its teaching [14]. Basic concepts of artificial neural networks (ANN) modeling and its ap...
applicability of the welled-studied multilayer perceptron (MLP) architecture with computationally cheap sigmoid activation functions and the backpropagation method for its teaching [14]. Basic concepts of artificial neural networks (ANN) modeling and its ap...