Skip to main content

Advertisement

Log in

Non-symmetric correspondence analysis: an alternative for species occurrences data

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Species occurrences gathered from the literature, from atlases or from field surveys are currently used to analyze multispecific patterns, such as species richness or species geographic ranges. Such occurrences result from the independent recognitions of specimens by several botanists in particular places and at particular occasions. Thereby, the analysis of the resulting occasional ‘relevés’ involves the assignment of the species occurrences to spatial units such as a grid of quadrats. As a result, the distribution of occurrences among quadrats is controlled while their distribution among species is observed. In this paper we show how non-symmetric correspondence analysis (NSCA) enables the investigation of data structure by taking into account this fundamental asymmetry. We apply this new ordination technique to a list of endemic tree species occurrences in the Western Ghats (South India). We explore the interesting properties of NSCA as an ordination technique and demonstrate the usefulness of the method as a tool in biogeography. Regarding the Western Ghats, NSCA brings out the preponderance of deforestation over biogeographic history in explaining the observed multispecific patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, M. P. 1985. Continuum concept, ordination methods and niche theory. Annu. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Blackburn, T. M. & Gaston, K. J. 1996a. The distribution of bird species in the New World: patterns in species turnover. Oikos 77: 146–152.

    Google Scholar 

  • Blackburn, T. M. & Gaston, K. J. 1996b. Spatial patterns in the species richness of birds in the New World. Ecography 19: 369- 376.

    Google Scholar 

  • Bolognini, G. & Nimis, P. L. 1993. Phytogeography of Italian deciduous oak woods based on numerical classification of plant distribution ranges. J. Veg. Sci. 4: 847–860.

    Google Scholar 

  • Brown, J. H., Stevens, G. C. & Kaufman, D. M. 1996. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27: 597–623.

    Google Scholar 

  • Crovello, T. J. 1981. Quantitative biogeography: an overview. Taxon 30: 563–575.

    Google Scholar 

  • Currie, D. J. 1991. Energy and large-scale patterns of animal-and plant-species richness. Am. Nat. 137: 27–49.

    Google Scholar 

  • De Franceschi, D. 1993. Phylogénie des Ebénales, analyse de l'ordre et origine biogéographique des espèces indiennes. Publication du Département d'Ecologie no 33, Institut Français de Pondichéry, Inde.

    Google Scholar 

  • Dolédec, S., Chessel, D., Ter Braak, C. J. F. & Champely, S. 1996. Matching species traits to environmental variables: a new three-table ordination method. Env. Ecol. Stat. 3: 143–166.

    Google Scholar 

  • Escoufier, Y. 1987. The duality diagram: a means of better practical applications. Pp. 139–156. In: Legendre, P. & Legendre, L. (eds), Development in numerical ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Gaston, K. J. 1996. The multiple forms of the interspecific abundance-distribution relationship. Oikos 76: 211–220.

    Google Scholar 

  • Gower, J. C. 1966. Some distances properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Greenacre, M. J. 1984. Theory and applications of correspondence analysis. Academic Press, London.

    Google Scholar 

  • Heikkinen, R. K. 1996. Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio 126: 151–165.

    Google Scholar 

  • Hill, M. O. 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Google Scholar 

  • Hill, M. O. 1991. Patterns of species distribution in Britain elucidated by canonical correspondence analysis. J. Biogeogr. 18: 247–255.

    Google Scholar 

  • Hill, M. O. & Gauch, H. G. Jr. 1980. Detrended Correspondence Analysis: an improved ordination technique. Vegetatio 42: 47- 58.

    Google Scholar 

  • Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24: 417–441.

    Google Scholar 

  • Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.

    Google Scholar 

  • Lauro, N. & D'ambra, L. 1984. L'analyse non symétrique des correspondances. Pp 433–446. In: Diday, E. & Coll. (eds), Data Analysis and Informatics III. Elsevier, North Holland.

    Google Scholar 

  • Legakis, A. & Kypriotakis, Z. 1994. A biogeographical analysis of the island of Crete, Greece. J. Biogeogr. 21: 441–445.

    Google Scholar 

  • Light, R. J. & Margolin, B. H. 1971. An analysis of variance for categorical data. J. Am. Stat. Assoc. 66: 534–544.

    Google Scholar 

  • Minchin, P. R. 1987. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio 71: 145- 156.

    Google Scholar 

  • Mourelle, C. & Ezcurra, E. 1996. Species richness of Argentine cacti: a test of biogeographic hypotheses. J. Veg. Sci. 7: 667–680.

    Google Scholar 

  • Mourelle, C. & Ezcurra, E. 1997. Rapoport's rule: a comparative analysis between south and north american columnar cacti. Am. Nat. 150: 131–142.

    Google Scholar 

  • Noy-Meir, I. & van der Maarel, E. 1987. Relations between community theory and community analysis in vegetation science: some historical perspectives. Vegetatio 69: 5–15.

    Google Scholar 

  • Noy-Meir, I. & Whittaker, R. H. 1977. Continuous multivariate methods in community analysis: some problems and developments. Vegetatio 33: 79–98.

    Google Scholar 

  • Oksanen, J. 1987. Problems of joint display of species and site scores in correspondence analysis. Vegetatio 72: 51–57.

    Google Scholar 

  • Palmer, M. W. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Google Scholar 

  • Pascal, J. P. 1984. Les forêts denses humides sempervirentes des Ghâts occidentaux de l'Inde: écologie, structure, floristique, succession. Travaux de la Section Scientifique et Technique 20, Institut Français de Pondichéry, Inde.

    Google Scholar 

  • Pascal, J. P. 1988. Wet evergreen forests of the Western Ghats of India: ecology, structure, floristic composition and succession. Travaux de la Section Scientifique et Technique 20 bis, Institut Français de Pondichéry, Inde.

    Google Scholar 

  • Peet, R. K., Knox, R. G., Case, J. S. & Allen, R. B. 1988. Putting things in order: the advantages of detrended correspondence analysis. Am. Nat. 131: 924–934.

    Google Scholar 

  • Pitkänen, S. 1997. Correlation between stand structure and ground vegetation: an analytical approach. Plant Ecol. 131: 109–126.

    Google Scholar 

  • Prendergast, J. R., Wood, S. N., Lawton, J. H. & Eversham, B. C. 1993. Correcting for variation in recording effort in analyses of diversity hotspots. Biodiv. Letters 1: 39–53.

    Google Scholar 

  • Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. Am. Nat. 149: 875–902.

    Google Scholar 

  • Ramesh, B. R. & Pascal, J. P. 1991. Distribution of endemic, arborescent evergreen species in the Western Ghats. Pp. 20–29. In: Proceedings of the Symposium on Rare, Endangered and Endemic Plants of theWestern Ghats. Kerala Forest Department.

  • Ramesh, B. R. & Pascal, J. P. 1997. Atlas of endemics of the Western Ghats (India). Distribution of tree species in the evergreen and semi-evergreen forests. Publication du Département d'Ecologie no 38, Institut Français de Pondichéry, Inde.

    Google Scholar 

  • Rich, T. C. G. & Woodruff, E. R. 1992. Recording bias in botanical surveys. Watsonia 19: 73–95.

    Google Scholar 

  • Schoener, T. W. 1987. The geographical distribution of rarity. Oecologia 74: 161–173.

    Google Scholar 

  • Stevens, G. C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. Am. Nat. 140: 893–911.

    Google Scholar 

  • Ter Braak, C. J. F. 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics 41: 859–873.

    Google Scholar 

  • Ter Braak, C. J. F. 1986. Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Thioulouse, J. & Chessel, D. 1992. A method for reciprocal scaling of species tolerance and sample diversity. Ecology 73: 670–680.

    Google Scholar 

  • Thioulouse, J., Chessel, D., Dolédec, S. & Olivier, J. M. 1997. ADE-4: a multivariate analysis and graphical display software. Statistics Computing 7: 75–83.

    Google Scholar 

  • Wartenberg, D., Ferson, S. & Rohlf, F. J. 1987. Putting things in order: a critique of detrended correspondence analysis. Am. Nat. 129: 434–448.

    Google Scholar 

  • Williams, P. H. 1996. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc. R. Soc. Lond. B 263: 579–588.

    Google Scholar 

  • Wright, D. H. 1991. Correlations between incidence and abundance are expected by chance. J. Biogeogr. 18: 463–466.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimaret-Carpentier, C., Chessel, D. & Pascal, JP. Non-symmetric correspondence analysis: an alternative for species occurrences data. Plant Ecology 138, 97–112 (1998). https://doi.org/10.1023/A:1009708824434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009708824434