Abstract
Until now, photovoltaics — the conversion of sunlight to electrical power — has been dominated by solid-state junction devices, often made of silicon. But this dominance is now being challenged by the emergence of a new generation of photovoltaic cells, based, for example, on nanocrystalline materials and conducting polymer films. These offer the prospect of cheap fabrication together with other attractive features, such as flexibility. The phenomenal recent progress in fabricating and characterizing nanocrystalline materials has opened up whole new vistas of opportunity. Contrary to expectation, some of the new devices have strikingly high conversion efficiencies, which compete with those of conventional devices. Here I look into the historical background, and present status and development prospects for this new generation of photoelectrochemical cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Bequerel, E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. C.R. Acad. Sci. 9, 145–149 (1839).
Gurney, R. W. & Mott, N. F. Theory of the photolysis of silver bromide and the photographic latent image. Proc. R. Soc. Lond. A 164, 151–167 (1938).
West, W. First hundred years of spectral sensitization. Proc. Vogel Cent. Symp. Photogr. Sci. Eng. 18, 35–48 (1974).
Moser, J. Notiz über die Verstärkung photoelectrischer Ströme durch optische Sensibilisierung. Monatsh. Chem. 8, 373 (1887).
Spitler, M. T. Dye photo-oxidation at semiconductor electrodes—a corollary to spectral sensitization in photography. J. Chem. Educ. 60, 330–332 (1983).
Namba, S. & Hishiki, Y. Color sensitization of zinc oxide with cyanide dyes. J. Phys. Chem. 69, 774–779 (1965).
Nelson, R. C. Minority carrier trapping and dye sensitization. J. Phys. Chem. 69, 714–718 (1965).
Boudon, J. Spectral sensitization of chemical effects in solids. J. Phys. Chem. 69, 705–713 (1965).
Gerischer, H. & Tributsch, H. Electrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristallen. Ber. Bunsenges. Phys. Chem. 72, 437–445 (1968).
Hauffe, K., Danzmann, H. J., Pusch, H., Range, J. & Volz, H. New Experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. J. Electrochem. Soc. 117, 993–999 (1970).
Brattain, W. H. & Garrett, C. G. B. Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 34, 129–176 (1955).
Gerischer, H. Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174–1182 (1966).
Kalyanasundaram; K. Photoelectrochemcial cell studies with semiconductor electrodes: a classified bibliography (1975–1983). Solar Cells 15, 93–156 (1985).
Licht, S. Multiple band gap semiconductor/electrolyte solar energy conversion. J. Phys. Chem. 105, 6281–6294 (2001).
Fujishima. A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
O'Regan, B. & Grätzel, M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).
Hagfeldt, A. & Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 33, 269–277 (2000).
Hilgendorff, M., Spanhel, L., Rothenhäsuler, Ch. & Müller, G. From ZnO colloids to nanocrystalline highly conductive films. J. Electrochem. Soc. 145, 3632–3637 (1998).
Nelson, J. Continuous time random walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 15374–15380 (1999).
Barbé, Ch. J. et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am. Ceram. Soc. 80, 3157–3171 (1997).
Hodes, G., Howell, I. D. J. & Peter, L. M. Nanocrystalline photoelectrochemical cells: a new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992).
Schwarzburg, K. & Willig, F. Origin of photovoltage in dye sensitized elelectrochemical solar cells. J. Phys. Chem. B 103, 5743–5746 (1999).
Pichot, F. & Gregg, B. A. The photovoltage-determining mechanism in dye-sensitized solar cells. J. Phys. Chem. B 104, 6–10 (1999).
Cahen, D., Hodes, G., Grätzel, M. Guillemoles, J. F. & Riess, I. Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104, 2053–2059 (2000).
Van de Lagemaat, J., Park, N.-G. & Frank, A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 104, 2044–2052 (2000).
Dloczik, L. et al. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 101, 10281–10289 (1997).
Masatai, Y. & Hodes, G. Size quantization in electrodeposited CdTe nanocrystalline films. J. Phys. Chem. B 101, 2685–2690 (1997).
Nazeruddin, M. K. et al. Conversion of light to electricity by cis X2-Bis(2,2′-bipyridyl-4,4′-dicarboxalate) ruthernium(II) charge transfer sensitizers. J. Am. Chem. Soc. 115, 6382–6390 (1993).
Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigations of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).
Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).
Hinsch, A. et al. in Proc. 16th Eur. PV Solar Energy Conf., Glasgow, May 2000 (eds Scheel, H. et al.) 32 (James & James, London, 2000).
Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).
Grätzel, M. The artificial leaf, bio-mimetic photocatalysis. Cattech 3, 3–17 (1999).
Santato, C., Ulmann, M. & Augustynski, J. Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001).
Khan, S. U. M. & Akikusa, J. Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 103, 7184–7189 (1999).
Tennakone, K., Kumara, G. R. R. A., Kumarasinghe, A. R., Wijayantha, K. G. U. & Sirimanne, P. M. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689–1693 (1995).
O'Regan, B. & Schwarz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of dye sensitized heterojunctions. Chem. Mater. 10, 1501–1509 (1998).
Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).
Krüger, J., Bach, U. & Grätzel, M. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085–2087 (2001).
Kaiser, I. et al. The eta-solar cell with CuInS2: a photovoltaic cell concept using an extremely thin absorber. Sol. Energy Mater. Sol. Cells 67, 89–96 (2001).
Halls, J. J. M., Pickler, K., Friend, R. H., Morati, S. C. & Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor acceptor heterojunctions. Science 270, 1789–1791 (1995).
Schön, J. H., Kloc, Ch., Bucher, E. & Batlogg, B. Efficient organic photovoltaic diodes based on doped pentacene. Nature 403, 408–410 (2000).
Brabec, C. J. & Sariciftci, N. S. Polymeric photovoltaic devices. Mater. Today 3–8 (2000).
Wöhrle,.D. & Meissner D. Organic solar cells. Adv. Mat. 3, 129–138 (1991).
Shaheen, S. E. et al. 2.5% efficient orga-nic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).
Tuladhar, D. et al. Abstract, Int. Workshop Nanoctruct. Photovoltaics, Dresden, Germany 〈http://www.mpipks-dresden.mpg.de〉 (2001).
Grätzel, M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaic Res. Applic. 8, 171–185 (2000).
Savenije, T. J., Warman, J. M. & Goosens, A. Visible light sensitization of titanium dioxide using a phenylene vinylene polymer. Chem. Phys. Lett. 278, 148–153 (1998).
Acknowledgements
I thank the members of the Swiss Federal Institute of Technology (EPFL) electrochemical photovoltaics development team, some of whose work is referenced; the industrial organizations whose interest in this PV system has induced them to license the concept and thereby support the research; EPFL; and OFEN (Swiss Federal Office of Energy) for past encouragement and support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607
Issue Date:
DOI: https://doi.org/10.1038/35104607
This article is cited by
-
Advancements in semiconductor-based interface engineering strategies and characterization techniques for carrier dynamics in photoelectrochemical water splitting
Science China Materials (2024)
-
Plasmonic-Based TiO2 and TiO2 Nanoparticles for Photocatalytic CO2 to Methanol Conversion in Energy Applications: Current Status and Future Prospects
Topics in Catalysis (2024)
-
Computational studies of the influence of auxiliary acceptors in the D-A'-π-A structure of organic dyes on the photovoltaic performance of dye solar cells
Journal of Molecular Modeling (2024)
-
Cu2O as the hole extraction layer modified BiVO4 photoanode to enhance charge separation and transfer
Science China Materials (2024)
-
Nitrogen and fluorine co-doped 3D carbon framework embedded VSe2 nanosheets as high-performance sodium-ion battery anode materials
Ionics (2024)