Skip to main content

Advertisement

Log in

TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a strong oxidizing pollutant, NO2 can cause fire or even explosion. People living in atmosphere containing NO2 for a long time will significantly affects human health. In this work, we developed a Schottky heterojunction sensor modified by g-C3N4 quantum dots (g-C3N4QDs) and rGO deposited on TiO2 nanotubes (TNTs) arrays. This sensor showed high response and extremely fast response/recovery time as well as excellent detection of ppb level of NO2 at room temperature. TNTs were obtained using a one-step anodic oxidation process. TNTs were modified with g-C3N4QDs and rGO using quasi-CVD method and cyclic voltammetry during in situ electrodeposition, respectively. TNTs/g-C3N4QDs/rGO Schottky heterojunction sensor exhibited high sensitivity to 10 ppm of NO2 (response equal to 15982) at room temperature. Below 15 ppb, sensing response also can reach 127. Sensor response was very fast and increased to 15982 in just 2 s when exposed to 10 ppm of NO2 after which it recovers 90% within 1.16 s. This work clarified the influence of abundant oxygen vacancies (VO·) in TNTs and photogenerated electrons on TNTs/g-C3N4QDs/rGO nanostructures as well as their sensing performances. Our experimental details demonstrated that Schottky barrier was established between TNTs and rGO, which was very beneficial for ppb-level NO2 detection at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shiliang J, Haibo W, Tong W, Donghang Y (2013) A high-performance room-temperature NO2 sensor based on an ultrathin heterojunction film. Adv Mater 25:1755–1760

    Article  Google Scholar 

  2. Antonio T, Marco R, Alexandra T (2010) Semiconductor gas sensors: dry synthesis and application. Angew Chem 49:7632–7659

    Article  Google Scholar 

  3. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  4. Vanalakar SA, Patil VL, Harale NS, Vhanalakar SA, Gang MG, Jin YK, Patil PS, Jin HK (2015) Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators B Chem 221:1195–1201

    Article  Google Scholar 

  5. Andringa AM, Meijboom JR, Smits ECP, Mathijssen SGJ, Blom PWM, Leeuw DMD (2011) Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv Funct Mater 21:100–107

    Article  Google Scholar 

  6. Shendage SS, Patil VL, Vanalakar SA, Patil SP, Harale NS, Bhosale JL, Kim JH, Patil PS (2017) Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens Actuators B Chem 240:426–433

    Article  Google Scholar 

  7. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core/shell and core multishell nanowire heterostructures. Nature 420:57

    Article  Google Scholar 

  8. Wang Y, Liu MX, Ling T, Tang CC, Zhi CY, Du XW (2014) Gas-phase anion exchange towards ZnO/ZnSe heterostructures with intensive visible light emission. J Mater Chem C 2:2793–2798

    Article  Google Scholar 

  9. Gautam UK, Xiaosheng F, Yoshio B, Jinhua Z, Dmitri G (2008) Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. ACS Nano 2:1015–1021

    Article  Google Scholar 

  10. Fang Q, Yat L, Silvija G, Hong-Gyu P, Yajie D, Yong D, Zhong Lin W, Lieber CM (2008) Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater 7:701–706

    Article  Google Scholar 

  11. Ya Y, Pradel KC, Qingshen J, Jyh Ming W, Fang Z, Yusheng Z, Yue Z, Zhong Lin W (2012) Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 6:6984–6989

    Article  Google Scholar 

  12. Kempa TJ (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885

    Article  Google Scholar 

  13. Gu F, Zeng H, Zhu Y, Yang Q, Ang LK, Zhuang S (2014) Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection. Adv Opt Mater 2:189–196

    Article  Google Scholar 

  14. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831

    Article  Google Scholar 

  15. Hu J, Zou C, Su Y, Li M, Han Y, Kong ES-W, Yang Z, Zhang Y (2018) An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J Mater Chem A 6:17120–17131

    Article  Google Scholar 

  16. Yang Z, Guo L, Zu B, Guo Y, Xu T, Dou X (2014) CdS/ZnO core/shell nanowire-built films for enhanced photodetecting and optoelectronic gas-sensing applications. Adv Opt Mater 2:738–745

    Article  Google Scholar 

  17. Schierbaum K, Kirner U, Geiger J, Göpel W (1991) Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2. Sens Actuators B Chem 4:87–94

    Article  Google Scholar 

  18. Guo L, Yang Z, Dou X (2017) Artificial olfactory system for trace identification of explosive vapors realized by optoelectronic schottky sensing. Adv Mater 29:1604528

    Article  Google Scholar 

  19. Galstyan V, Ponzoni A, Kholmanov I, Natile MM, Comini E, Nematov S, Sberveglieri G (2018) Reduced graphene oxide–tio2 nanotube composite: comprehensive study for gas sensing applications. ACS Appl Nano Mater 1:7098–7105

    Article  Google Scholar 

  20. Irokawa Y (2011) Hydrogen sensors using nitride-based semiconductor diodes: the role of metal/semiconductor interfaces. Sensors 11:674–695

    Article  Google Scholar 

  21. Hasegawa H, Akazawa M (2008) Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor applications. Appl Surf Sci 254:3653–3666

    Article  Google Scholar 

  22. Miyoshi M, Kuraoka Y, Asai K, Shibata T, Tanaka M, Egawa T (2007) Electrical characterization of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors. J Vac Sci Technol B 25:1231–1235

    Article  Google Scholar 

  23. Te-Yu W, Ping-Hung Y, Shih-Yuan L, Zhong Lin W (2009) Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J Am Chem Soc 131:17690–17695

    Article  Google Scholar 

  24. Yeh PH, Li Z, Wang ZL (2009) Schottky-gated probe-free ZnO nanowire biosensor. Adv Mater 21:4975–4978

    Article  Google Scholar 

  25. Singh A, Uddin MA, Sudarshan T, Koley G (2014) Tunable reverse-biased graphene/silicon heterojunction schottky diode sensor. Small 10:1555–1565

    Article  Google Scholar 

  26. Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652

    Article  Google Scholar 

  27. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  Google Scholar 

  28. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  Google Scholar 

  29. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  Google Scholar 

  30. Cao Y, Zhu J, Xu J, He J, Sun JL, Wang Y, Zhao Z (2014) Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10:2345–2351

    Article  Google Scholar 

  31. Fattah A, Khatami S, Mayorga-Martinez CC, Medina-Sánchez M, Baptista-Pires L, Merkoçi A (2014) Graphene/silicon heterojunction schottky diode for vapors sensing using impedance spectroscopy. Small 10:4193–4199

    Google Scholar 

  32. Yang H, Heo J, Park S, Song HJ, Seo DH, Byun K-E, Kim P, Yoo I, Chung H-J, Kim K (2012) Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336:1140–1143

    Article  Google Scholar 

  33. Galstyan V, Comini E, Baratto C, Ponzoni A, Ferroni M, Poli N, Bontempi E, Brisotto M, Faglia G, Sberveglieri G (2015) Large surface area biphase titania for chemical sensing. Sens Actuators B Chem 209:1091–1096

    Article  Google Scholar 

  34. Zhang S, Hang NT, Zhang Z, Yue H, Yang W (2017) Preparation of g-C3N4/graphene composite for detecting NO2 at room temperature. Nanomaterials 7:12

    Article  Google Scholar 

  35. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748

    Article  Google Scholar 

  36. Wu K, Dong X, Zhu J, Wu P, Liu C, Wang Y, Wu J, Hou J, Liu Z, Guo X (2018) Designing biomimetic porous celery: Tio2/ZnO nanocomposite for enhanced CO2 photoreduction. J Mater Sci 53:11595–11606. https://doi.org/10.1007/s10853-018-2397-y

    Article  Google Scholar 

  37. An T, Tang J, Zhang Y, Quan Y, Gong X, Al-Enizi AM, Elzatahry AA, Zhang L, Zheng G (2016) Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl Mater Interfaces 8:12772–12779

    Article  Google Scholar 

  38. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125:4045–4049

    Article  Google Scholar 

  39. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  Google Scholar 

  40. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  41. Lei Y, Zhang L, Meng G, Li G, Zhang X, Liang C, Chen W, Wang S (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  Google Scholar 

  42. Wang Y, Hu G, Duan X, Sun H, Xue Q (2002) Microstructure and formation mechanism of titanium dioxide nanotubes. Chem Phys Lett 365:427–431

    Article  Google Scholar 

  43. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  Google Scholar 

  44. Su J, Lin Z, Geng P, Chen G (2016) Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light. J Hazard Mater 316:159–168

    Article  Google Scholar 

  45. Cao Y, Zhu J, Xu J, He J, Sun JL, Wang Y, Zhao Z (2014) Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10:2345–2351

    Article  Google Scholar 

  46. Zhang N, Zhang Y, Pan X, Fu X, Liu S, Xu YJ (2012) Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J Phys Chem C 116:23501–23511

    Google Scholar 

  47. Fang-Xing X, Jianwei M, Bin L (2014) Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J Am Chem Soc 136:1559–1569

    Article  Google Scholar 

  48. Lin X, Xu D, Zheng J, Song M, Che G, Wang Y, Yang Y, Liu C, Zhao L, Chang L (2016) Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity. J Alloy Compd 688:891–898

    Article  Google Scholar 

  49. Khomenko VM, Langer K, Rager H, Fett A (1998) Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys Chem Miner 25:338–346

    Article  Google Scholar 

  50. Qu J, Ge Y, Zu B, Li Y, Dou X (2016) Transition-metal-doped p-type ZnO nanoparticle-based sensory array for instant discrimination of explosive vapors. Small 12:1369–1377

    Article  Google Scholar 

  51. Wang J, Zhang P, Li X, Zhu J, Li H (2013) Synchronical pollutant degradation and H2 production on a Ti3+ -doped TiO2 visible photocatalyst with dominant (001) facets. Appl Catal B 134–135:198–204

    Article  Google Scholar 

  52. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, And VLD, Elaasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669

    Article  Google Scholar 

  53. Yun Z, Lihua L, Bo W, Xinchen W (2016) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem 46:12868

    Google Scholar 

  54. Shubin Y, Yongji G, Jinshui Z, Liang Z, Lulu M, Zheyu F, Robert V, Xinchen W, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 44:2452

    Google Scholar 

  55. Liang Q, Li Z, Yu X, Huang ZH, Kang F, Yang QH (2015) Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater 27:4634–4639

    Article  Google Scholar 

  56. Jiang Z, Zhu C, Wan W, Qian K, Xie J (2015) Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production. J Mater Chem A 4:1806–1818

    Article  Google Scholar 

  57. Yao Z, Yan J, Jun C, Jian L, Ji L, Aijun D, Weimin Z, Zhonghua Z, Smith SC, Mietek J (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J Am Chem Soc 133:20116–20119

    Article  Google Scholar 

  58. Yang X, Salzmann C, Shi H, Wang H, Green ML, Xiao T (2008) The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. J Phys Chem A 112:10784

    Article  Google Scholar 

  59. Li F, Gao X, Wang R, Zhang T, Lu G (2017) Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuators B Chem 248:812–819

    Article  Google Scholar 

  60. Yang S, Wang Z, Hu Y, Luo X, Lei J, Zhou D, Fei L, Wang Y, Gu H (2015) Highly responsive room-temperature hydrogen sensing of α-MoO3 nanoribbon membranes. ACS Appl Mater Interfaces 7:9247–9253

    Article  Google Scholar 

  61. Hosseini Z, Mortezaali A (2015) Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens Actuators B Chem 207:865–871

    Article  Google Scholar 

  62. Shao L, Wu Z, Duan H, Shaymurat T (2018) Discriminative and rapid detection of ozone realized by sensor array of Zn2+ doping tailored MoS2 ultrathin nanosheets. Sens Actuators B Chem 258:937–946

    Article  Google Scholar 

  63. Li Y, Song Z, Li Y, Chen S, Li S, Li Y, Wang H, Wang Z (2019) Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. Sens Actuators B Chem 282:259–267

    Article  Google Scholar 

  64. Kumar R, Goel N, Kumar M (2017) UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens 2:1744–1752

    Article  Google Scholar 

  65. Wang C, Sun R, Li X, Sun Y, Sun P, Liu F, Lu G (2014) Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens Actuators B Chem 204:224–230

    Article  Google Scholar 

  66. Prajapati CS, Bhat N (2018) ppb level detection of NO2 using a WO3 thin film-based sensor: material optimization, device fabrication and packaging. RSC Adv 8:6590–6599

    Article  Google Scholar 

  67. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134:4905–4917

    Article  Google Scholar 

  68. Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H (2008) CuO nanowire gas sensors for air quality control in automotive cabin. Sens Actuators B Chem 135:298–303

    Article  Google Scholar 

  69. Liu S, Yu B, Zhang H, Fei T, Zhang T (2014) Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens Actuators B Chem 202:272–278

    Article  Google Scholar 

  70. Dong YL, Zhang XF, Cheng XL, Xu YM, Gao S, Zhao H, Huo LH (2014) Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like a-Fe2O3 and reduced graphene oxide. Rsc Adv 4:57493–57500

    Article  Google Scholar 

  71. Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645

    Article  Google Scholar 

  72. Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH, Jang HW (2015) Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9:10453–10460

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by funding from the National Natural Science Foundation of China (21866028, 61704114, 51662036,), Graduate Student Scientific Research Innovation Projects in Xinjiang Autonomous Region (XJGRI2017046), Achievements Transformation and Technique Extension Projection in Shihezi University (CGZH201603) and Open Foundation of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan (2016BTRC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianning Wu or Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wu, K., Zhu, W. et al. TiO2 nanotubes/g-C3N4 quantum dots/rGO Schottky heterojunction nanocomposites as sensors for ppb-level detection of NO2. J Mater Sci 54, 7834–7849 (2019). https://doi.org/10.1007/s10853-019-03468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03468-x