Skip to main content
Log in

Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented “sub-colonies” (n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albright R, Mason B, Langdon C (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27(3):485–490

    Article  Google Scholar 

  • Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci U S A 107(47):20400–20404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellworthy, J. & Fine, M. Coral Reefs (2017) https://doi.org/10.1007/s00338-017-1598-1

  • Ben-Zvi O, Eyal G, Loya Y (2014) Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759(1):15–26

    Article  Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral reefs 23(1):74–83

    Article  Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Casati P, Walbot V (2004) Crosslinking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effects on translation. Plant physiology 136(2):3319–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31(4):1045–1056

    Article  Google Scholar 

  • D’Angelo C, Denzel A, Vogt A, Matz MV, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2008) Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser 364:97–106

    Article  Google Scholar 

  • Date and Time (2017) https://www.timeanddate.com

  • De Gruijl FR, Van Kranen HJ, Mullenders LHF (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63(1–3):19–27

    Article  PubMed  Google Scholar 

  • Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldber O, Iglesias-Prieto R, Anthony K (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31(11):1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Ben-Zvi O, Shaked Y, Smith TB, Harii S, Denis V, Noyes T, Tamir R, Loya Y (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the red sea PLoS One 10(6)

  • Gabay Y, Benayahu Y, Fine M (2013) Does elevated pCO2 affect reef octocorals? Ecol Evol 3(3):465–473

    Article  PubMed  Google Scholar 

  • Gilmore AM, Larkum AW, Salih A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M, Van Woesik R (2003) Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem Photobiol 77(5):515–523

    Article  CAS  PubMed  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2(6):495–509

    Article  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral Reef Ecosystems under Climate Change and Ocean Acidification. Front Mar Sci 4:158

    Article  Google Scholar 

  • Horwitz R, Fine M (2014) High CO2 detrimentally affects tissue regeneration of Red Sea corals. Coral Reefs 33(3):819–829

    Article  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci U S A 89(21):10302–10305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi A, Ozaki S, Nakamura T, Inoue M, Tanaka Y, Suzuki A, Kawahata H, Sakai K (2012) Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Mar Environ Res 73:32–36

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R Soc Open Sci 4(5):170038

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvitt H, Rosenfeld H, Zandbank K, Tchernov D (2011) Regulation of apoptotic pathways by Stylophora pistillata (anthozoa, pocilloporidae) to survive thermal stress and bleaching. PLoS One 6(12)

  • Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74(17):4988–5001

    Article  CAS  Google Scholar 

  • Lecointe A, Domart-coulon I, Paris A, Meibom A, Domart-coulon I (2016) Cell proliferation and migration during early development of a symbiotic scleractinian coral. Proc R Soc Lond B Biol Sci. 283(1831)

  • Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2007) It’s cheap to be colorful: Anthozoans show a slow turnover of GFP-like proteins. FEBS J 274(10):2496–2505

    Article  CAS  PubMed  Google Scholar 

  • Loya Y (1976) The Red Sea coral Stylophora pistillata is an r strategist. Nature 259:478–480

    Article  Google Scholar 

  • Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat. Red Sea. J Mar Biol 13(2):100–123

    Article  Google Scholar 

  • Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Marubini F, Ferrier-Pages C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: A working hypothesis towards a physiological mechanism. Coral Reefs 27(3):491–499

    Article  Google Scholar 

  • Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 82(2):345–350

    Article  CAS  PubMed  Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497(7447):13

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Van Woesik R, Yamasaki H (2005) Photoinhibition of photosynthesis is reduced by water flow in the reef-building coral Acropora digitifera. Mar Ecol Prog Ser 301:109–118

    Article  Google Scholar 

  • NMP (2006) National monitoring Program for the Gulf of Aqaba http://www.meteo-tech.co.il/eilat-yam/eilat_en.asp

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4(10)

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (p. 151). IPCC

  • Permata WD, Kinzie Iii RA, Hidaka M (2000) Histological studies on the origin of planulae of the coral Pocillopora damicornis. Mar Ecol Prog Ser 200:191–200

    Article  Google Scholar 

  • Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63(1–3):88–102

    Article  CAS  PubMed  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Liuod S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO 2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1979a) The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar Ecol Prog Ser 1:133–144

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1979b) The reproduction of the Red Sea coral Stylophora pistillata. II. Synchronization in breeding and seasonality of planulae shedding. Mar Ecol Prog Ser 1:145–152

    Article  Google Scholar 

  • Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Scientific Reports 3:1421

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth MS, Fan TY, Deheyn DD (2013) Life History Changes in Coral Fluorescence and the Effects of Light Intensity on Larval Physiology and Settlement in Seriatopora hystrix PLoS One 8(3)

  • Roth MS, Latz MI, Goericke R, Deheyn DD (2010) Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol 213(21):3644–3655

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Salih A, Larkum A, Cox G (2001) Photoprotection from photoinhibition of symbiotic algae in corals by fluorescent pigments. Science Access 3(1):1–4

    Google Scholar 

  • Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408(6814):850–853

    Article  CAS  PubMed  Google Scholar 

  • Smith-Keune C, Dove S (2008) Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol 10(2):166–180

    Article  CAS  PubMed  Google Scholar 

  • Smith EG, D’Angelo C, Salih A, Wiedenmann J (2013) Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32(2):463–474

    Article  Google Scholar 

  • Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pieribone VA, Gruber DF (2014) The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS One 9(1)

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Bio Ecol 153(1):63–74

    Article  Google Scholar 

  • Wheeler B (2010) lmPerm: Permutation tests for linear models. R package version 1.1-2. https://CRAN.R-project.org/package=lmPerm

  • Wurtmann EJ, Wolin SL (2009) RNA under attack: cellular handling of RNA damage. Crit Rev Biochem Mol Biol 44(1):34–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Interuniversity Institute for Marine Sciences at Eilat (IUI for the logistical support. We are indebted to Tom Shlesinger, Hanna Rapuano, Dror Komet, Yoav Lindemann, and Jessica Bellworthy for help in field work and aquaria maintenance and Dr. Roi Holtzman and Itai Granot for statistical advice. Special thanks are due to Naomi Paz for copy editing the manuscript. This study was partially supported by the Israel Science Foundation (ISF) No. 341/12 and the U.S. Middle East Regional Cooperation (MERC) Program Agency for International Development (MERC/USAID) No. M32-037 to Y.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Loya.

Additional information

Topic Editor Dr. Simon Davy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinblat, M., Fine, M., Tikochinski, Y. et al. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions. Coral Reefs 37, 309–320 (2018). https://doi.org/10.1007/s00338-018-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1659-0

Keywords