Skip to main content

Advertisement

Log in

Study and explanation about the morphological, electrochemical and structural properties of differently synthesized polypyrrole

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polypyrrole (ppy), a conducting polymer was synthesized by four different polymerization methods viz. electrochemical polymerization (EP), interfacial polymerization (IP), chemical oxidative polymerization (COP) and template-assisted polymerization (TAP). The change in morphology that occurred due to the variation of polymerization method used was studied with scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The samples were analyzed by Fourier transform infrared (FT-IR) spectroscopy to confirm the successful polymerization of pyrrole to polypyrrole with the appearance of characteristic bands for N–H stretching, C–N stretching, ppy ring stretching, C–H and C–C bending vibrations. Optical studies were done by UV–Vis absorption spectroscopy that displayed π→π* and polaronic/bipolaronic transitions of ppy. XRD analysis revealed amorphous nature of ppy. Examination of SEM micrographs disclosed that ppy synthesized by EP had the typical cauliflower structure while ppy formed by IP were in the form of chain like network with a thickness of 250–290 nm, COP resulted in the formation of interlinked microspheres of polypyrrole and TAP formed polypyrrole nanofibers. Electrochemical characterization showed that ppy prepared by EP had the lowest redox activity and the samples were also tested to detect Pb2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc., Chem. Commun. 578 (1977)

  2. A.G. MacDiarmid, Synth. Met. 125, 11 (2001)

    Google Scholar 

  3. A.T. Mane, S.D. Sartale, V.B. Patil, J. Mater. Sci.: Mater. Electron. 26, 8497 (2015)

    CAS  Google Scholar 

  4. S. Liu, Y. Ma, R. Zhang, X. Luo, ChemElectroChem 3, 1799 (2016)

    CAS  Google Scholar 

  5. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, J. Mater. Sci.: Mater. Electron. 27, 1044 (2016)

    CAS  Google Scholar 

  6. Q. Zhou, G. Shi, J. Am. Chem. Soc. 138, 2868 (2016)

    CAS  Google Scholar 

  7. C. Chang, X. Yang, S. Xiang, H. Que, M. Li, J. Mater. Sci.: Mater. Electron. 28, 1777 (2017)

    CAS  Google Scholar 

  8. V.K. Thakur, M.R. Kessler, in Advanced Energy Materials, ed. by A. Tiwari, S. Valyukh. Polymer Nanocomposites: New Advanced Dielectric Materials for Energy Storage Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2014), p. 207

    Google Scholar 

  9. M.S. Rahman, W.A. Hammed, R.B. Yahya, H. N. M. Ekramul Mahmud, J. Polym. Res. 23, 192 (2016)

    Google Scholar 

  10. J. Huo, M. Zheng, Y. Tu, J. Wu, J. Mater. Sci.: Mater. Electron. 27, 5680 (2016)

    CAS  Google Scholar 

  11. C. Bora, S.K. Dolui, Polymer 53, 923 (2012)

    CAS  Google Scholar 

  12. Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Nanoscale 5, 4462 (2013)

    CAS  Google Scholar 

  13. P.K. Kalambate, R.A. Dar, S.P. Karna, A.K. Srivastava, J. Power Sources 276, 262 (2015)

    CAS  Google Scholar 

  14. K. Saranya, Md. Rameez, A. Subramania, Eur. Polym. J. 66, 207 (2015)

    CAS  Google Scholar 

  15. P. Xu, X. Han, B. Zhang, N.H. Mack, S.-H. Jeon, H.-L. Wang, Polymer 50, 2624 (2009)

    CAS  Google Scholar 

  16. P.-C. Wang, R.E. Lakis, A.G. MacDiarmid, Thin Solid Films 516, 2341 (2008)

    CAS  Google Scholar 

  17. J. Hazarika, A. Kumar, J. Polym. Res. 23, 95 (2016)

    Google Scholar 

  18. F.A.G. da Silva Jr., J.C. Queiroz, E.R. Macedo, A.W.C. Fernandes, N.B. Freire, M.M. da Costa, H.P. de Oliveira, Mater. Sci. Eng. C 62, 317 (2016)

    Google Scholar 

  19. I. Sapurina, J. Stejskal, I. Šeděnková, M. Trchová, J. Kovářová, J. Hromádková, J. Kopecká, M. Cieslar, A.A. El-Nasr, M.M. Ayad, Synth. Met. 214, 14 (2016)

    CAS  Google Scholar 

  20. A. Morozan, P. Jégou, S. Campidelli, Serge Palacin, B. Jousselme, Chem. Commun. 48, 4627 (2012)

    CAS  Google Scholar 

  21. S. Carquigny, O. Segut, B. Lakard, F. Lallemand, P. Fievet, Synth. Met. 158, 453 (2008)

    CAS  Google Scholar 

  22. J.K. Gan, Y.S. Lim, N.M. Huang, H.N. Lim, Appl. Surf. Sci. 357, 479 (2015)

    CAS  Google Scholar 

  23. J. Zhu, Y. Xu, J. Wang, J. Wang, Y. Bai, X. Du, Phys. Chem. Chem. Phys. 17, 19885 (2015)

    CAS  Google Scholar 

  24. R. Wannapob, M.Y. Vagin, I. Jeerapan, W.C. Mak, Langmuir 31, 11904 (2015)

    CAS  Google Scholar 

  25. L. Liang, G. Chen, C.-Y. Guo, Compos. Sci. Technol. 129, 130 (2016)

    CAS  Google Scholar 

  26. L.-Y. Chang, C.-T. Li, Y.-Y. Li, C.-P. Lee, M.-H. Yeh, K.-C. Ho, J.-J. Lin, Electrochim. Acta 155, 263 (2015)

    CAS  Google Scholar 

  27. Y. Tian, J. Zhang, S. Tang, L. Zhou, W. Yang, Small 12, 721 (2016)

    CAS  Google Scholar 

  28. K. Ghanbari, N. Hajheidari, J. Polym. Res. 22, 152 (2015)

    Google Scholar 

  29. H.G. Lemos, S.F. Santos, E.C. Venancio, Synth. Met. 203, 22 (2015)

    CAS  Google Scholar 

  30. L. Tian, Y. Feng, Y. Qi, B. Wang, X. Fu, Y. Chen, J. Polym. Res. 18, 2379 (2011)

    CAS  Google Scholar 

  31. C. He, C. Yang, Y. Li, Synth. Met. 139, 539 (2003)

    CAS  Google Scholar 

  32. G.T. -Gómez, P.G. -Romero, Synth. Met. 98, 95 (1998)

    Google Scholar 

  33. N.H.A. Rahman, T.I.T. Kudin, A.M.M. Ali, M.Z.A. Yahya, J. Mater. Sci. Eng. A 2, 190 (2012)

    Google Scholar 

  34. R.A.M. Campos, V.A. Silva, R. Faez, M.C. Rezende, Polímeros 26, 197 (2016)

    Google Scholar 

  35. G. Qi, Z. Wu, H. Wang, J. Mater. Chem. C 1, 7102 (2013)

    CAS  Google Scholar 

  36. X. Zhang, J. Zhang, Z. Liu, C. Robinson, Chem. Commun. 16, 1852 (2004)

    Google Scholar 

  37. Y. Cai, Z. Qin, L. Chen, Prog. Nat. Sci.: Mater. Int. 21, 460 (2011)

    Google Scholar 

  38. A. Dagar, A.K. Narula, J. Mater. Sci.: Mater. Electron. 28, 8643 (2017)

    CAS  Google Scholar 

  39. H. Peng, C. Soeller, N.A. Vigar, V. Caprio, J. Travas-Sejdic, Biosens. Bioelectron. 22, 1868 (2007)

    CAS  Google Scholar 

  40. A. Singh, Z. Salmi, P. Jha, N. Joshi, A. Kumar, P. Decorse, H. Lecoq, S. Lau-Truong, D.K. Aswal, S.K. Gupta, M.M. Chehimi, RSC Adv. 3, 13329 (2013)

    CAS  Google Scholar 

  41. X. Wang, T. Wang, D. Liu, J. Guo, P. Liu, Ind. Eng. Chem. Res. 55, 866 (2016)

    CAS  Google Scholar 

  42. Y. Fu, Y.S. Su, A. Manthiram, J. Electrochem. Soc. 159, A1420 (2012)

    CAS  Google Scholar 

  43. A. Liu, C. Li, H. Bai, G. Shi, J. Phys. Chem. C 114, 22783 (2010)

    CAS  Google Scholar 

  44. T. Carmona, M. Pineiro, C.J.P. Monteiro, M.M. Pereira, A.J.M. Valente, Colloids Surf. A 481, 288 (2015)

    CAS  Google Scholar 

  45. L.Y. Shi, J.Q. Wang, L. Gao, L. Huang, J. Zhu, Y. Wang, X. Fan, T. Yu, M. Zhu, Z. Li, Z. Zou, Mater. Manuf. Processes 22, 705 (2007)

    CAS  Google Scholar 

  46. C. Debiemme-Chouvy, Electrochem. Solid-State Lett. 10, E24 (2007)

    CAS  Google Scholar 

  47. Z.-H. Huang, Y. Song, X.-X. Xu, X.-X. Liu, ACS Appl. Mater. Interfaces 7, 25506 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The author (Shruti Peshoria) would like to express gratitude to Guru Gobind Singh Indraprastha University for providing financial support in terms of Indraprastha Research Fellowship (IPRF) with award number GGSIPU/DRC/Ph.D/Adm./2014/1634 and Ms. Neeru Sharma for administrative services. Also, the authors would like to thank Jamia Millia Islamia, New Delhi for HRTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep Kumar Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshoria, S., Narula, A.K. Study and explanation about the morphological, electrochemical and structural properties of differently synthesized polypyrrole. J Mater Sci: Mater Electron 28, 18348–18356 (2017). https://doi.org/10.1007/s10854-017-7781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7781-x