Skip to main content

Advertisement

Log in

Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Chronic abuse of methylphenidate (MPH) often causes neuronal cell death. Topiramate (TPM) carries neuroprotective effects, but its exact mechanism of action remains unclear. In the present study, the role of various doses of TPM and its possible mechanisms, receptors and signaling pathways involved against MPH-induced hippocampal neurodegeneration were evaluated in vivo. Thus, domoic acid (DOM) was used as AMPA/kainate receptor agonist, bicuculline (BIC) as GABAA receptor antagonist, ketamine (KET) as NMDA receptor antagonist, yohimbine (YOH) as α2 adrenergic receptor antagonist and haloperidol (HAL) was used as dopamine D2 receptor antagonist. Open field test (OFT) was used to investigate the disturbances in motor activity. Hippocampal neurodegenerative parameters were evaluated. Protein expressions of CREB/BDNF and Akt/GSK3 signaling pathways were also evaluated. Cresyl violet staining was performed to show and confirm the changes in the shape of the cells. TPM (70 and 100 mg/kg) reduced MPH-induced rise in lipid peroxidation, oxidized form of glutathione (GSSG), IL-1β and TNF-α levels, Bax expression and motor activity disturbances. In addition, TPM treatment increased Bcl-2 expression, the level of reduced form of glutathione (GSH) and the levels and activities of superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes. TPM also inhibited MPH-induced hippocampal degeneration. Pretreatment of animals with DOM, BIC, KET and YOH inhibited TPM-induced neuroprotection and increased oxidative stress, neuroinflammation, neuroapoptosis and neurodegeneration while reducing CREB, BDNF and Akt protein expressions. Also pretreatment with DOM, BIC, KET and YOH inhibited TPM-induced decreases in GSK3. It can be concluded that the mentioned receptors by modulation of CREB/BDNF and Akt/GSK3 pathways, are involved in neuroprotection of TPM against MPH-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal NB, Agarwal NK, Mediratta PK, Sharma KK (2011) Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 20(3):257–262

    Article  PubMed  Google Scholar 

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  PubMed  Google Scholar 

  • Almeida R, Manadas B, Melo C, Gomes J, Mendes C, Graos M, Carvalho R, Carvalho A, Duarte C (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Frey BN, Valvassori SS, Zanotto C, Gomes KM, Comim CM, Cassini C, Stertz L, Ribeiro LC, Quevedo J (2007) DNA damage in rats after treatment with methylphenidate. Prog Neuropsychopharmacol Biol Psychiatry 31(6):1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Angelucci F, Gruber SH, El Khoury A, Tonali PA, Mathé AA (2007) Chronic amphetamine treatment reduces NGF and BDNF in the rat brain. Eur Neuropsychopharmacol 17(12):756–762

    Article  CAS  PubMed  Google Scholar 

  • Armaǧan A, Kutluhan S, Yılmaz M, Yılmaz N, Bülbül M, Vural H, Soyupek S, Nazıroǧlu M (2008) Topiramate and vitamin E modulate antioxidant enzyme activities, nitric oxide and lipid peroxidation levels in pentylenetetrazol-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 103(2):166–170

    Article  PubMed  Google Scholar 

  • Arnone D (2005) Review of the use of topiramate for treatment of psychiatric disorders. Ann Gen Psychiatry 4(1):5–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Babcock Q, Byrne T (2000) Student perceptions of methylphenidate abuse at a public liberal arts college. J Am Coll Health 49(3):143–145

    Article  CAS  PubMed  Google Scholar 

  • Bergink V, van Megen HJ, Westenberg HG (2004) Glutamate and anxiety. Eur Neuropsychopharmacol 14(3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Ng F, Dean O, Dodd S, Bush AI (2008) Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 29(7):346–351

    Article  CAS  PubMed  Google Scholar 

  • Bischofs S, Zelenka M, Sommer C (2004) Evaluation of topiramate as an anti-hyperalgesic and neuroprotective agent in the peripheral nervous system. J Peripher Nerv Syst 9(2):70–78

    Article  CAS  PubMed  Google Scholar 

  • Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59(12):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75(7):711–721

  • Cheng J, Xiong Z, Duffney LJ, Wei J, Liu A, Liu S, Chen G-J, Yan Z (2014) Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Biol Psychiatry 76(12):953–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chengappa K, Gershon S, Levine J (2001) The evolving role of topiramate among other mood stabilizers in the management of bipolar disorder. Bipolar Disord 3(5):215–232

    Article  CAS  PubMed  Google Scholar 

  • Cippitelli A, Damadzic R, Frankola K, Goldstein A, Thorsell A, Singley E, Eskay RL, Heilig M (2010) Alcohol-Induced neurodegeneration, suppression of transforming growth factor-β, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol Psychiatry 67(9):823–830

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Leone G, Saulle E, Pisani F, Bernardi G, Calabresi P (2004) Coactivation of GABAA and GABAB receptor results in neuroprotection during in vitro ischemia. Stroke 35(2):596–600

    Article  CAS  PubMed  Google Scholar 

  • de la Mora MP, Gallegos-Cari A, Arizmendi-García Y, Marcellino D, Fuxe K (2010) Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: structural and functional analysis. Prog Neurobiol 90(2):198–216

    Article  PubMed  Google Scholar 

  • Dworkin S, Mantamadiotis T (2010) Targeting CREB signalling in neurogenesis. Expert Opin Ther Targets 14(8):869–879

    Article  CAS  PubMed  Google Scholar 

  • Edmonds HL, Jiang YD, Zhang PY, Shank R (2001) Topiramate as a neuroprotectant in a rat model of global ischemia-induced neurodegeneration. Life Sci 69(19):2265–2277

    Article  CAS  PubMed  Google Scholar 

  • Freese L, Muller E, Souza M, Couto-Pereira N, Tosca C, Ferigolo M, Barros H (2012) GABA system changes in methylphenidate sensitized female rats. Behav Brain Res 231(1):181–186

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F (2006a) Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord 8(3):275–280

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J (2006b) Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 1097(1):224–229

    Article  CAS  PubMed  Google Scholar 

  • Fukui R, Svenningsson P, Matsuishi T, Higashi H, Nairn AC, Greengard P, Nishi A (2003) Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J Neurochem 87(6):1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Canals M, Torvinen M, Marcellino D, Terasmaa A, Genedani S, Leo G, Guidolin D, Diaz-Cabiale Z, Rivera A (2007) Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. J Neural Transm 114(1):49–75

    Article  CAS  PubMed  Google Scholar 

  • Garnett WR (2000) Clinical pharmacology of topiramate: a review. Epilepsia 41(s1):61–65

    Article  Google Scholar 

  • Gibbs EL, Kass AE, Eichen DM, Fitzsimmons-Craft EE, Trockel M, Wilfley DE, Taylor CB (2016) Attention-deficit/hyperactivity disorder—specific stimulant misuse, mood, anxiety, and stress in college-age women at high risk for or with eating disorders. J Am Coll Health 64(4):300–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowing L, Farrell M, Ali R, White JM (2009) Alpha2-adrenergic agonists for the management of opioid withdrawal. Cochrane Libr. doi:10.1002/14651858.CD002024

    Google Scholar 

  • Grabenstatter HL, Ferraro DJ, Williams PA, Chapman PL, Dudek FE (2005) Use of chronic epilepsy models in antiepileptic drug discovery: the effect of topiramate on spontaneous motor seizures in rats with kainate-induced epilepsy. Epilepsia 46(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Crossey EL, Zhang L, Zucca S, George OL, Valenzuela CF, Zhao X (2011) Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum. PLoS One 6(5):e19351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Cao J, Liu X, Meng F, Li M, Chen B, Zhang J (2015) AMPK plays a dual role in regulation of CREB/BDNF pathway in mouse primary hippocampal cells. J Mol Neurosci 56(4):782–788

    Article  CAS  PubMed  Google Scholar 

  • Huss M, Lehmkuhl U (2002) Methylphenidate and substance abuse: a review of pharmacology, animal, and clinical studies. J Atten Disord 6:S65–S71

    Article  PubMed  Google Scholar 

  • Husson I, Mesples B, Medja F, Leroux P, Kosofsky B, Gressens P (2004) Methylphenidate and MK-801, an N-methyl-d-aspartate receptor antagonist: shared biological properties. Neuroscience 125(1):163–170

    Article  CAS  PubMed  Google Scholar 

  • Izenwasser S, Coy AE, Ladenheim B, Loeloff RJ, Cadet JL, French D (1999) Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine. Eur J Pharmacol 373(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depression Anxiety 24(7):495–517

    Article  CAS  PubMed  Google Scholar 

  • Kelley JM, Hughes LB, Bridges SL (2008) Does gamma-aminobutyric acid (GABA) influence the development of chronic inflammation in rheumatoid arthritis? J Neuroinflamm 5(1):1–9

    Article  Google Scholar 

  • Kiguchi M, Fujita S, Oki H, Shimizu N, Cools AR, Koshikawa N (2008) Behavioural characterisation of rats exposed neonatally to bisphenol-A: responses to a novel environment and to methylphenidate challenge in a putative model of attention-deficit hyperactivity disorder. J Neural Transm 115(7):1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Klein-Schwartz W (2002) Abuse and toxicity of methylphenidate. Curr Opin Pediatr 14(2):219–223

    Article  PubMed  Google Scholar 

  • Koçer A, Memişoğullari R, Domaç FM, Ilhan A, Koçer E, Okuyucu Ş, Özdemir B, Yüksel H (2009) IL-6 levels in migraine patients receiving topiramate. Pain Pract 9(5):375–379

    Article  PubMed  Google Scholar 

  • Koh S, Tibayan FD, Simpson JN, Jensen FE (2004) NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia 45(6):569–575

    Article  CAS  PubMed  Google Scholar 

  • Kohl B, Dannhardt G (2001) The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr Med Chem 8(11):1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Kozlovsky N, Shanon-Weickert C, Tomaskovic-Crook E, Kleinman JE, Belmaker R, Agam G (2004) Reduced GSK-3ß mRNA levels in postmortem dorsolateral prefrontal cortex of schizophrenic patients. J Neural Transm 111(12):1583–1592

    Article  CAS  PubMed  Google Scholar 

  • Kubera M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leskiewicz M, Tetich M, Maes M, Kenis G, Marciniak A, Czuczwar SJ (2004) Effect of topiramate on the kainate-induced status epilepticus, lipid peroxidation and immunoreactivity of rats. Pharmacol Rep 56(5):553–562

    CAS  Google Scholar 

  • Kudin AP, Debska-Vielhaber G, Vielhaber S, Elger CE, Kunz WS (2004) The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 45(12):1478–1487

    Article  CAS  PubMed  Google Scholar 

  • Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20(2):171–175

    Article  CAS  PubMed  Google Scholar 

  • Le W, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 107(10):1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Lee S-R, Kim S-P, Kim J-E (2000) Protective effect of topiramate against hippocampal neuronal damage after global ischemia in the gerbils. Neurosci Lett 281(2):183–186

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K (2005) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 25(5):1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Louzada PR, Lima ACP, Mendonça-Silva DL, Noël F, De Mello FG, Ferreira ST (2004) Taurine prevents the neurotoxicity of β-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18(3):511–518

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Ji C, Sun C, Cao D, Ma P, Ji Z, Cao F, Min D, Li S, Cai J (2012) Topiramate attenuates cerebral ischemia/reperfusion injury in gerbils via activating GABAergic signaling and inhibiting astrogliosis. Neurochem Int 60(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Martins MR, Reinke A, Petronilho FC, Gomes KM, Dal-Pizzol F, Quevedo J (2006) Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res 1078(1):189–197

    Article  CAS  PubMed  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949(1):218–227

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M (2016) Involvement of AMPA/kainate and GABA A receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol 784:181–191

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S (2015a) Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 67(2):230–235

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S (2015b) The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 29(3):299–309

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad MMM, Falak R, Heidari M, Sharzad M, Kalantari E (2016a) Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway. J Neural Transm (Vienna) 123(12):1463–1477

    Article  CAS  Google Scholar 

  • Motaghinejad M, Motevalian M, Shabab B (2016b) Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 619:106–113

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M, Shabab B (2016c) Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin Exp Pharmacol Physiol 43(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M, Shabab B, Fatima S (2016d) Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J Neural Transm 124(1):121–131

    Article  PubMed  Google Scholar 

  • Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M (2016e) The neuroprotective effect of lithium against high dose methylphenidate: possible role of BDNF. Neurotoxicology 56:40–54

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M, Babalouei F, Abdollahi M, Heidari M, Madjd Z (2017) Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: molecular, biochemical and histological evidences. Brain Res Bull 132:82–98

  • Mula M, Pini S, Cassano GB (2007) The role of anticonvulsant drugs in anxiety disorders: a critical review of the evidence. J Clin Psychopharmacol 27(3):263–272

    Article  CAS  PubMed  Google Scholar 

  • Nazıroğlu M, Yürekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33(5):589–599

    Article  PubMed  Google Scholar 

  • Pandey SC, Chartoff EH, Carlezon WA, Zou J, Zhang H, Kreibich AS, Blendy JA, Crews FT (2005) CREB gene transcription factors: role in molecular mechanisms of alcohol and drug addiction. Alcohol Clin Exp Res 29(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Paranos SL, Tomić MA, Micov AM, Stepanović-Petrović RM (2013) The mechanisms of antihyperalgesic effect of topiramate in a rat model of inflammatory hyperalgesia. Fundam Clin Pharmacol 27(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Patrick KS, Markowitz JS (1997) Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention-deficit hyperactivity disorder. Hum Psychopharmacol Clin Exp 12(6):527–546

    Article  CAS  Google Scholar 

  • Polanczyk G, Zeni C, Genro JP, Guimaraes AP, Roman T, Hutz MH, Rohde LA (2007) Association of the adrenergic α2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Gomez B, Vazquez-Alvarez A, Martinez-Pena J, Reyes-Vazquez C, Yang P, Dafny N (2005) Methylphenidate and amphetamine modulate differently the NMDA and AMPA glutamatergic transmission of dopaminergic neurons in the ventral tegmental area. Life Sci 77(6):635–649

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Noebels JL (2003) Topiramate alters excitatory synaptic transmission in mouse hippocampus. Epilepsy Res 55(3):225–233

    Article  CAS  PubMed  Google Scholar 

  • Raffa RB, Finno KE, Tallarida CS, Rawls SM (2010) Topiramate-antagonism of l-glutamate-induced paroxysms in planarians. Eur J Pharmacol 649(1):150–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Réus GZ, Scaini G, Jeremias GC, Furlanetto CB, Morais MO, Mello-Santos LM, Quevedo J, Streck EL (2014) Brain apoptosis signaling pathways are regulated by methylphenidate treatment in young and adult rats. Brain Res 1583:269–276

    Article  PubMed  Google Scholar 

  • Riederer P, Hoyer S (2006) From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J Neural Transm 113(11):1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Studer V, Motta C, De Chiara V, Barbieri F, Bernardi G, Centonze D (2012) Inflammation inhibits GABA transmission in multiple sclerosis. Mult Scler J 18(11):1633–1635

    Article  CAS  Google Scholar 

  • Rozas C, Carvallo C, Contreras D, Carreño M, Ugarte G, Delgado R, Zeise M, Morales B (2015) Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of β-adrenergic and D1/D5 receptors. Neuropharmacology 99:15–27

    Article  CAS  PubMed  Google Scholar 

  • Russell VA, De Villiers A, Sagvolden T, Lamm M, Taljaard J (2000) Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder—the spontaneously hypertensive rat. Brain Res Bull 53(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Sardo P, Carletti F, D’Agostino S, Rizzo V, Ferraro G (2006) Involvement of nitric oxide-soluble guanylyl cyclase pathway in the control of maximal dentate gyrus activation in the rat. J Neural Transm 113(12):1855–1861

    Article  CAS  PubMed  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108(11):1263–1282

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21(1):127–148

    Article  CAS  PubMed  Google Scholar 

  • Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T (2011) GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci 108(28):11692–11697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steullet P, Lavoie S, Kraftsik R, Guidi R, Gysin R, Cuénod M, Do KQ (2008) A glutathione deficit alters dopamine modulation of L-type calcium channels via D2 and ryanodine receptors in neurons. Free Radic Biol Med 44(6):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Takahata K, Shimazu S, Katsuki H, Yoneda F, Akaike A (2006) Effects of selegiline on antioxidant systems in the nigrostriatum in rat. J Neural Transm 113(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Türeyen K, Vemuganti R, Sailor KA, Dempsey RJ (2004) Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods 139(2):203–207

    Article  PubMed  Google Scholar 

  • Vecsei L, Ekman R, Alling C, Widerlöv E (1989) Influence of cysteamine and cysteine on open-field behaviour, and on brain concentrations of catecholamines, somatostatin, neuropeptide Y, and corticotropin releasing hormone in the rat. J Neural Transm 78(3):209–220

    Article  CAS  Google Scholar 

  • Vles J, Feron F, Hendriksen J, Jolles J, van Kroonenburgh M, Weber W (2003) Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD). Neuropediatrics 34(02):77–80

    Article  CAS  PubMed  Google Scholar 

  • Wilens TE (2008) Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 28(3):S46–S53

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xiao Y, Xu M-Y (2008) Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm 115(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zare S, Farrokhi F (2014) The effect of oral administration of methylphenidate on hippocampal tissue in adult male rats. Neurosurgery 117(8):21–27

    Google Scholar 

  • Zhang K, Yang C, Xu Y, Sun N, Yang H, Liu J, Xu Q, Shen Y (2010) Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. J Neural Transm 117(3):393–401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Committee of Iran University of Medical Sciences and Iran hormone Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manijeh Motevalian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaghinejad, M., Motevalian, M., Fatima, S. et al. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J Neural Transm 124, 1369–1387 (2017). https://doi.org/10.1007/s00702-017-1771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1771-2

Keywords