1932

Abstract

This brief disquisition about the early history of studies on regulated protein degradation introduces several detailed reviews about the ubiquitin system and autophagy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044859
2017-06-20
2025-03-30
The full text of this item is not currently available.

Literature Cited

  1. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. 1.  1980. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. PNAS 77:1783–86 [Google Scholar]
  2. Hershko A, Ciechanover A, Varshavsky A. 2.  2000. The ubiquitin system. Nat. Med. 10:1073–81 [Google Scholar]
  3. Finley D, Chen X, Walters KJ. 3.  2016. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41:77–93 [Google Scholar]
  4. Förster F, Unverdorben P, Sledź P, Baumeister W. 4.  2013. Unveiling the long-held secrets of the 26S proteasome. Structure 21:1551–62 [Google Scholar]
  5. Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G. 5.  et al. 2016. Structure of the human 26S proteasome at a resolution of 3.9 Å. PNAS 113:7816–21 [Google Scholar]
  6. Chen S, Wu J, Lu Y, Ma YB, Lee BH. 6.  et al. 2016. Structural basis for dynamic regulation of the human 26S proteasome. PNAS 113:12991–96 [Google Scholar]
  7. Varshavsky A. 7.  2006. The early history of the ubiquitin field. Protein Sci 15:647–54 [Google Scholar]
  8. Varshavsky A. 8.  2008. Discovery of cellular regulation by protein degradation. J. Biol. Chem. 283:34469–89 [Google Scholar]
  9. Varshavsky A. 9.  2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298–345 [Google Scholar]
  10. Varshavsky A. 10.  1991. Naming a targeting signal. Cell 64:13–15 [Google Scholar]
  11. Hwang CS, Shemorry A, Varshavsky A. 11.  2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–77 [Google Scholar]
  12. Chen SJ, Wu X, Wadas B, Oh J-H, Varshavsky A. 12.  2017. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355:366 [Google Scholar]
  13. Tasaki T, Sriram SM, Park KS, Kwon YT. 13.  2012. The N-end rule pathway. Annu. Rev. Biochem. 81:261–89 [Google Scholar]
  14. Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. 14.  2014. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 24:603–11 [Google Scholar]
  15. Eldeeb M, Fahlman R. 15.  2016. The-N-end rule: the beginning determines the end. Protein Pept. Lett. 23:343–48 [Google Scholar]
  16. Dougan DA, Micevski D, Truscott KN. 16.  2011. The N-end rule pathway: from recognition by N-recognins to destruction by AAA+ proteases. Biochim. Biophys. Acta 1823:83–91 [Google Scholar]
  17. Mogk A, Schmidt R, Bukau B. 17.  2007. The N-end rule pathway of regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–72 [Google Scholar]
  18. Graciet E, Wellmer F. 18.  2010. The plant N-end rule pathway: structure and functions. Trends Plant Sci 15:447–53 [Google Scholar]
  19. Ohsumi Y. 19.  2014. Historical landmarks of autophagy research. Cell Res 24:9–23 [Google Scholar]
  20. Cha-Molstad H, Sung KS, Hwang J, Kim KA, Yu JE. 20.  et al. 2015. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17:917–29 [Google Scholar]
  21. Dikic I. 21.  2017. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86:193–224 [Google Scholar]
  22. Hurley JH, Young LN. 22.  2017. Mechanisms of autophagy initiation. Annu. Rev. Biochem. 86:225–44 [Google Scholar]
  23. Preston GM, Brodsky JL. 23.  2017. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem. J. 474:445–69 [Google Scholar]
  24. Buetow L, Huang DT. 24.  2016. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17:626–42 [Google Scholar]
  25. Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. 25.  2016. The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int. J. Biochem. Cell Biol. 79:403–18 [Google Scholar]
  26. Garcia-Rodriguez N, Wong RP, Ulrich HD. 26.  2016. Functions of ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 7:87 [Google Scholar]
  27. Yau R, Rape M. 27.  2016. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18:579–86 [Google Scholar]
  28. Swatek KN, Komander D. 28.  2016. Ubiquitin modifications. Cell Res 26:399–422 [Google Scholar]
  29. Huang X, Dixit VM. 29.  2016. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–98 [Google Scholar]
  30. Maculins T, Fiskin E, Bhogaraju S, Dikic I. 30.  2016. Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res 26:499–510 [Google Scholar]
  31. Wang F, Canadeo LA, Huibregtse JM. 31.  2015. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114:127–33 [Google Scholar]
  32. Vittal V, Stewart MD, Brzovic PS, Klevit RE. 32.  2015. Regulating the regulators: recent revelations in the control of E3 ubiquitin ligases. J. Biol. Chem. 290:21244–51 [Google Scholar]
  33. Ordureau A, Munch C, Harper JW. 33.  2015. Quantifying ubiquitin signaling. Mol. Cell 58:660–76 [Google Scholar]
  34. Popovic D, Vucic D, Dikic I. 34.  2014. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20:1242–53 [Google Scholar]
  35. Deshaies RJ. 35.  2014. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94 [Google Scholar]
  36. Finley D, Ulrich HD, Sommer T, Kaiser P. 36.  2012. The ubiquitin–proteasome system of Saccharomyces cerevisiae. Genetics 192:319–60 [Google Scholar]
  37. Burroughs AM, Iyer LM, Aravind L. 37.  2012. Structure and evolution of ubiquitin and ubiquitin-related domains. Methods Mol. Biol. 832:15–63 [Google Scholar]
  38. Schulman BA. 38.  2011. Twists and turns in ubiquitin-like conjugation cascades. Protein Sci 20:1941–54 [Google Scholar]
  39. Thomas LR, Tansey WP. 39.  2011. Proteolytic control of the oncoprotein transcription factor Myc. Adv. Cancer Res. 110:77–106 [Google Scholar]
  40. Geoffroy M-C, Hay RT. 40.  2010. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10:564–68 [Google Scholar]
  41. Hochstrasser M. 41.  2009. Origin and function of ubiquitin-like proteins. Nature 458:422–29 [Google Scholar]
  42. Bergink S, Jentsch S. 42.  2009. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–67 [Google Scholar]
  43. Grabbe C, Dikic I. 43.  2009. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109:1481–94 [Google Scholar]
  44. Daulni A, Tansey WP. 44.  2009. Damage control: DNA repair, transcription, and the ubiquitin-proteasome system. DNA Rep 8:444–48 [Google Scholar]
  45. Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. 45.  2009. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 109:1509–36 [Google Scholar]
  46. Zheng N, Shabek N. 46.  2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57 [Google Scholar]
  47. Mevissen TET, Komander D. 47.  2017. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86:159–91 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044859
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error