Abstract
To reduce the power dissipation in adaptive control systems, we propose replacing the exact arithmetic hardware units with approximate ones. As a case study, an adaptive control system for object tracking based on the Kalman filter is implemented in FPGA. A thorough analysis of the Kalman filter’s circuitry for real-world object tracks acquired by an aviation radar system proved that adaptive control systems can successfully compensate for the calculation errors introduced by the approximate arithmetic units. The main contributions of this paper are that the introduction of the approximate arithmetic circuits to the adaptive control system (1) preserves the required accuracy and (2) significantly reduces the power dissipation and the size of the adaptive system’s circuitry.








Similar content being viewed by others
References
K. Abed, R. Siferd, CMOS VLSI implementation of a low-power logarithmic converter. IEEE Trans. Comput. 52(11), 1421–1433 (2003). doi:10.1109/TC.2003.1244940
K. Abed, R. Siferd, VLSI implementation of a low-power antilogarithmic converter. IEEE Trans. Comput. 52(9), 1221–1228 (2003). doi:10.1109/TC.2003.1228517
F. Auger, Z. Lou, B. Feuvrie, F. Li, Multiplier-free divide, square root, and log algorithms (DSP tips and tricks). Sig. Process. Mag. IEEE 28(4), 122–126 (2011). doi:10.1109/MSP.2011.941101
Z. Babić, A. Avramović, P. Bulić, An iterative logarithmic multiplier. Microprocess. Microsyst. 35(1), 23–33 (2011). doi:10.1016/j.micpro.2010.07.001
I. Baturone, F.J. Moreno-Velo, S. Sanchez-Solano, A. Ollero, Automatic design of fuzzy controllers for car-like autonomous robots. IEEE Trans. Fuzzy Syst. 12(4), 447–465 (2004). doi:10.1109/TFUZZ.2004.832532
D. Chen, B. Zhou, Z. Guo, P. Nilsson, Design and implementation of reciprocal unit, in Circuits and Systems, 2005. 48th Midwest Symposium on, vol. 2 (2005), pp. 1318–1321. doi:10.1109/MWSCAS.2005.1594352
S. Dixit, D. Nagaria, Design and analysis of cascaded lms adaptive filters for noise cancellation. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0332-5
J.P. Dubois, J.S. Daba, M. Naderm, E.C. Ferkh, GSM position tracking using a Kalman filter. World Acad. Sci. Eng. Technol. 68, 1610–1619 (2012)
Y. Gao, Y.J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system. J. Vib. Control 22(2), 595–603 (2016). doi:10.1177/1077546314534286
M.S. Grewal, A.P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 3rd edn. (Wiley, Hoboken, 2011)
X.V. Ha, C. Ha, J. Lee, Trajectory estimation of a tracked mobile robot using the sigma-point Kalman filter with an IMU and optical encoder, in ICIC (1) Lecture Notes in Computer Science, vol. 7399, ed. by D.S. Huang, C. Jiang, V. Bevilacqua, J.C.F. García (Springer, Berlin, 2012), pp. 415–422
A. Habegger, A. Stahel, J. Goette, M. Jacomet, An efficient hardware implementation for a reciprocal unit. In: Fifth IEEE International Symposium on Electronic Design, Test and Application, 2010. DELTA ’10 (2010), pp. 183–187. doi:10.1109/DELTA.2010.65
E. Hall, D. Lynch, S. Dwyer, Generation of products and quotients using approximate binary logarithms for digital filtering applications. IEEE Trans. Comput. C–19(2), 97–105 (1970). doi:10.1109/T-C.1970.222874
S. Haykin, Kalman Filtering and Neural Networks, 2nd edn. (Wiley, Hoboken, 2001)
W. He, W. Ge, Y. Li, Y.J. Liu, C. Yang, C. Sun, Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–13 (2016). doi:10.1109/TSMC.2016.2557227
S.F. Hsiao, C.S. Wen, M.Y. Tsai, Low-cost design of reciprocal function units using shared multipliers and adders for polynomial approximation and Newton Raphson interpolation. in 2010 International Symposium on Next-Generation Electronics (ISNE) (2010) pp. 40–43. doi:10.1109/ISNE.2010.5669204
S. Khan, I. Naseem, R. Togneri, M. Bennamoun, A novel adaptive kernel for the rbf neural networks. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0375-7
A.K. Kohli, D.S. Kapoor, Adaptive filtering techniques using cyclic prefix in OFDM systems for multipath fading channel prediction. Circuits Syst. Signal Process. 35(10), 3595–3618 (2016). doi:10.1007/s00034-015-0214-2
U. Kucukkabak, A. Akkas, Design and implementation of reciprocal unit using table look-up and Newton–Raphson iteration. in Digital System Design, 2004. DSD 2004. Euromicro Symposium on (2004), pp. 249–253. doi:10.1109/DSD.2004.1333284
G. Lai, Z. Liu, Y. Zhang, C.L.P. Chen, S. Xie, Y.J. Liu, Fuzzy adaptive inverse compensation method to tracking control of uncertain nonlinear systems with generalized actuator dead zone. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2016). doi:10.1109/TFUZZ.2016.2554152
M. Lastras, B. Parhami, A logarithmic approach to energy-efficient GPU arithmetic for mobile devices. in Signals, Systems and Computers (ASILOMAR), 2013 Conference Record of the Forty Seventh Asilomar Conference on (2013) pp. 1–4
D. Lee, A. Gaffar, R. Cheung, O. Mencer, W. Luk, G. Constantinides, Accuracy-guaranteed bit-width optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(10), 1990–2000 (2006). doi:10.1109/TCAD.2006.873887
T.H.S. Li, C.Y. Chen, K.C. Lim, Combination of fuzzy logic control and back propagation neural networks for the autonomous driving control of car-like mobile robot systems. in SICE Annual Conference 2010, Proceedings of (2010), pp. 2071–2076
Y. Liu, S. Tong, Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016). doi:10.1016/j.automatica.2015.10.034
Y.J. Liu, Y. Gao, S. Tong, Y. Li, Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016). doi:10.1109/TFUZZ.2015.2418000
Y.J. Liu, S. Tong, Adaptive fuzzy control for a class of nonlinear discrete-time systems with backlash. IEEE Trans. Fuzzy Syst. 22(5), 1359–1365 (2014). doi:10.1109/TFUZZ.2013.2286837
Y.J. Liu, S. Tong, Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015). doi:10.1109/TFUZZ.2014.2360954
U. LotriČ, P. BuliC̀, Applicability of approximate multipliers in hardware neural networks. Neurocomputing 96, 57–65 (2012). doi:10.1016/j.neucom.2011.09.039
V. Mahalingam, N. Ranganathan, Improving accuracy in Mitchell’s logarithmic multiplication using operand decomposition. IEEE Trans. Comput. 55(12), 1523–1535 (2006). doi:10.1109/TC.2006.198
J.N. Mitchell, Computer multiplication and division using binary logarithms. IRE Trans. Electron. Comput. EC–11(4), 512–517 (1962). doi:10.1109/TEC.1962.5219391
M. Monajati, S.M. Fakhraie, E. Kabir, Approximate arithmetic for low-power image median filtering. Circuits Syst. Signal Process. 34(10), 3191–3219 (2015). doi:10.1007/s00034-015-9997-4
E. Monmasson, L. Idkhajine, M. Cirstea, I. Bahri, A. Tisan, Mw Naouar, FPGAs in industrial control applications. IEEE Trans. Industr. Inf. 7(2), 224–243 (2011). doi:10.1109/TII.2011.2123908
L. Murali, D. Chitra, T. Manigandan, B. Sharanya, An efficient adaptive filter architecture for improving the seizure detection in EEG signal. Circuits Syst. Signal Process. 35(8), 2914–2931 (2016). doi:10.1007/s00034-015-0178-2
J.E. Naranjo, C. Gonzalez, R. Garcia, T. de Pedro, Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Trans. Intell. Transp. Syst. 9(3), 438–450 (2008). doi:10.1109/TITS.2008.922880
V. Paliouras, T. Stouraitis, Low-power properties of the logarithmic number system, in Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on (2001) pp. 229–236. doi:10.1109/ARITH.2001.930124
V. Paliouras, T. Stouraitis, Signal activity and power consumption reduction using the logarithmic number system, in Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on, vol. 2 (2001), pp. 653–656. doi:10.1109/ISCAS.2001.921155
B. Robinson, D. Hernandez-Garduno, M. Saquib, Fixed and floating-point implementations of linear adaptive techniques for predicting physiological hand tremor in microsurgery. IEEE J. Sel. Topics Signal Process. 4(3), 659–667 (2010). doi:10.1109/JSTSP.2010.2048240
O. Rosen, A. Medvedev, T. Wigren, Parallelization of the Kalman filter on multicore computational platforms. Control Eng. Pract. 21(9), 1188–1194 (2013). doi:10.1016/j.conengprac.2013.03.008
I.W. Sandberg, Robust Kalman filter design for discrete time-delay systems. Circuits Syst. Signal Process. 21(3), 337–343 (2002)
Z. Shen, Y. Yu, T. Huang, Normalized subband adaptive filter algorithm with combined step size for acoustic echo cancellation. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0429-x
S. So, A.E.W. George, R. Ghosh, K.K. Paliwal, Kalman filter with sensitivity tuning for improved noise reduction in speech. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0363-y
T. Stouraitis, V. Paliouras, Considering the alternatives in low-power design. IEEE Circuits Devices Mag. 17(4), 22–29 (2001). doi:10.1109/101.950050
L. Tamas, G. Lazea, R. Robotin, C. Marcu, S. Herle, Z. Szekely, State estimation based on Kalman filtering techniques in navigation, in Automation, Quality and Testing, Robotics, 2008. AQTR 2008. IEEE International Conference on, vol. 2 (2008), pp. 147–152. doi:10.1109/AQTR.2008.4588811
A.A. Vidal, V.G. Tavares, J.C. Príncipe, An adaptive signal processing framework for PV power maximization. Circuits Syst. Signal Process. 34(9), 2973–2992 (2015). doi:10.1007/s00034-015-9972-0
P. Vouzis, M. Kothare, L. Bleris, M. Arnold, A system-on-a-chip implementation for embedded real-time model predictive control. IEEE Trans. Control Syst. Technol. 17(5), 1006–1017 (2009). doi:10.1109/TCST.2008.2004503
C. Wu, X. Wang, Y. Guo, Q. Fu, Y. Yan, Robust uncertainty control of the simplified Kalman filter for acoustic echo cancelation. Circuits Syst. Signal Process. 35(12), 4584–4595 (2016). doi:10.1007/s00034-016-0263-1
S.W. Xu, P.L. Shui, X.Y. Yan, Y.H. Cao, Combined adaptive normalized matched filter detection of moving target in sea clutter. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0413-5
L. Yu, S. Fei, L. Sun, J. Huang, Y. Zhu, Fuzzy approximation of a novel nonlinear adaptive switching controller design. Circuits Syst. Signal Process. 34(2), 377–391 (2015). doi:10.1007/s00034-014-9866-6
W.J. Zhang, S.Y. Wang, Y.L. Feng, Novel simplex Kalman filters. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0323-6
X. Zhao, Y. Yin, H. Yang, R. Li, Adaptive control for a class of switched linear systems using state-dependent switching. Circuits Syst. Signal Process. 34(11), 3681–3695 (2015). doi:10.1007/s00034-015-0029-1
X. Zhu, Y.C. Soh, L. Xie, Robust Kalman filter design for discrete time-delay systems. Circuits Syst. Signal Process. 21(3), 319–335 (2002)
Y. Zou, M. Sheng, N. Zhong, S. Xu, A generalized Kalman filter for 2D discrete systems. Circuits Syst. Signal Process. 23(5), 351–364 (2004)
Acknowledgements
This research was supported by Slovenian Research Agency under Grants P2-0359 (National research program Pervasive computing) and P2-0241 (National research program Synergetics of complex systems and processes), and by Slovenian Research Agency and Ministry of Civil Affairs, Bosnia and Herzegovina, under Grant BI-BA/16-17-029.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lotrič, U., Bulić, P. Logarithmic Arithmetic for Low-Power Adaptive Control Systems. Circuits Syst Signal Process 36, 3564–3584 (2017). https://doi.org/10.1007/s00034-016-0486-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0486-1