Abstract
Both optokinetic nystagmus (OKN) and smooth-pursuit eye movements (SPEM) are subclasses of so-called slow eye movements. However, optokinetic responses are reflexive whereas smooth pursuit requires the voluntary tracking of a moving target. We used functional magnetic resonance imaging (fMRI) to determine the neural basis of OKN and SPEM, and to uncover whether the two underlying neural systems overlap or are independent at the cortical level. The results showed a largely overlapping neural circuitry. A direct comparison between activity during the execution of OKN and SPEM yielded no oculomotor-related area exclusively dedicated to one or the other eye movement type. Furthermore, the performance of SPEM evoked a bilateral deactivation of the human equivalent of the parietoinsular vestibular cortex. This finding might indicate that the reciprocally inhibitory visual–vestibular interaction involves not only OKN but also SPEM, which are both linked with the encoding of object-motion and self-motion. Moreover, we could show differential activation patterns elicited by look-nystagmus and stare-nystagmus. Look-nystagmus is characterized by large amplitudes and low-frequency resetting eye movements rather resembling SPEM. Look-nystagmus evoked activity in cortical oculomotor centers. By contrast, stare-nystagmus is usually characterized as being more reflexive in nature and as showing smaller amplitudes and higher frequency resetting eye movements. Stare-nystagmus failed to elicit significant signal changes in the same regions as look-nystagmus/SPEM. Thus, less reflexive eye movements correlated with more pronounced signal intensity. Finally, on the basis of a general investigation of slow eye movements, we were interested in a cortical differentiation between subtypes of SPEM. We compared activity associated with predictable and unpredictable SPEM as indicated by appropriate visual cues. In general, predictable and unpredictable SPEM share the same neural network, yet information about the direction of an upcoming target movement reduced the cerebral activity level.






Similar content being viewed by others
Abbreviations
- BA:
-
Brodmann area
- fMRI:
-
Functional magnetic resonance imaging
- FEF:
-
Frontal eye field
- GLM:
-
General linear model
- MP-RAGE:
-
Magnetization-prepared rapid acquisition gradient echo
- OKN:
-
Optokinetic nystagmus
- pIP:
-
Posterior intraparietal area
- PIVC:
-
Parietoinsular vestibular cortex
- pSPL:
-
Posterior portion of the superior parietal lobule
- SEF:
-
Supplementary eye field
- SPEM:
-
Smooth-pursuit eye movement
- VIP:
-
Ventral intraparietal area
References
Albright TD, Desimone R, Gross CG (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J Neurophysiol 51(1):16–31
Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C (1994) Cortical control of saccades and fixation in man. A PET study Brain 117:1073–1084
Baloh RW, Yee RD, Honrubia V (1980) Optokinetic nystagmus and parietal lobe lesions. Ann Neurol 7(3):269–276
Barnes GR, Donelan SF (1999) The remembered pursuit task: evidence for segregation of timing and velocity storage in predictive oculomotor control. Exp Brain Res 129:57–67
Barton JJS, Simpson T, Kiriakopoulos E, Stewart C, Crawley A, Guthrie, Wood M, Mikulis D (1996) Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Ann Neurol 40(3):387–398
Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85(2):886–899
Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA (1999) Cortical networks subserving pursuit and saccadic eye movements in humans: an fMRI study. Hum Brain Mapp 8(4):209–225
Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419(6904):269–270
Brandt T, Dieterich M (1999) The vestibular cortex, Its locations, functions, and disorders. Ann NY Acad Sci 871:293–312
Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual–vestibular interaction, Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121:1749–1758
Bremmer F, Ilg UJ, Thiele A, Distler C, Hoffmann KP (1997) Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J Neurophysiol 77(2):944–961
Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann NY Acad Sci 8721:272–281
Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2000) Stages of self-motion processing in primate posterior parietal cortex. Int Rev Neurobiol 44:173–198
Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296
Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002a) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1554–1568
Bremmer F, Klam F, Duhamel JR, Ben Hamed S, Graf W (2002b) Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(8):1569–1586
Brodmann (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt aufgrund des Zellenaufbaues. Barth, Leipzig
Büchel C, Josephs O, Rees G, Turner R, Frith CD, Friston KJ (1998) The functional anatomy of attention to visual motion, A functional MRI study. Brain 121:1281–1294
Bucher SF, Dieterich M, Seelos KC, Brandt T (1997) Sensorimotor cerebral activation during optokinetic nystagmus, A functional MRI study. Neurology 49(5):1370–1377
Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry TA, Brandt T (1998) Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44(1):120–125
Carpenter RHS (1988) Movements of the eyes. Pion, London
Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69(3):902–914
Corbetta M (1998) Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA 95(3):831–838
Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11(8):2383–2402
Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80(5):2657–2670
Darby DG, Nobre AC, Thangaraj V, Edelman R, Mesulam MM, Warach S (1996) Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage 3(1):53–62
Deutschländer A, Bense S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2002) Sensory system interactions during simultaneous vestibular and visual stimulation in PET. Hum Brain Mapp 16(2):92–103
Dieterich M, Brandt T (2000) Brain activation studies on visual–vestibular and ocular motor interaction. Curr Opin Neurol 13(1):13–18
Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance, An fMRI study. Brain 121:1479–1495
Dieterich M, Bucher SF, Seelos KC, Brandt T (2000) Cerebellar activation during optokinetic stimulation and saccades. Neurology 54(1):148–155
Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003) FMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148(1):117–127
Dodge R (1903) Five types of eye movements in the horizontal meridian plane of the field of regard. Am J Physiol Lond 8:307–329
Duffy CJ, Wurtz RH (1991) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345
Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000
Duvernoy HM (1999) The human brain, Surface, blood supply, and three-dimensional sectional anatomy. Springer, Wien New York
Eidelberg D, Galaburda AM (1984) Inferior parietal lobule, Divergent architectonic asymmetries in the human brain. Arch Neurol 41(8):843–852
Froehler MT, Duffy CJ (2002) Cortical neurons encoding path and place: where you go is where you are. Science 295(5564):2462–2465
Gabel SF, Misslisch H, Gielen CC, Duysens J (2002) Responses of neurons in area VIP to self-induced and external visual motion. Exp Brain Res 147(4):520–528
Galati G, Pappata S, Pantano P, Lenzi GL, Samson Y, Pizzamiglio L (1999) Cortical control of optokinetic nystagmus in humans: a positron emission tomography study. Exp Brain Res 126(2):149–159
Giaschi D, Jan JE, Bjornson B, Young SA, Tata M, Lycons CJ, Good WV, Wong PK (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45(11):772–781
Goltz HC, DeSouza JFX, Menon RS, Tweed DB, Villis T (2003) Interaction of retinal image and eye velocity in motion perception. Neuron 39:569–576
Grüsser OJ, Pause M, Schreiter U (1990) Localization and responses of neurons in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557
Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21(6):254–259
Hayakawa Y, Nakajims T, Takagi M, Fukuhara N, Abe H (2002) Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica 216:399–405
Heide W, Kurzidim K, Kömpf D (1996) Deficits of smooth-pursuit eye movements after frontal and parietal lesions. Brain 119:1951–1969
Heide W, Binkofski F, Seitz RJ, Posse S, Nitschke MF, Freund HJ, Kömpf D (2001) Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. Eur J Neurosci 13(6):1177–1189
Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205
Ilg UJ (1997) Slow eye movements. Prog Neurobiol 53(3):293–329
Ilg UJ, Hoffmann KP (1996) Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci 8(1):92–105
Ilg UJ, Thier P (2003) Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an “imaginary” target. J Neurophysiol 90(3):1489–1502
Ilg UJ, Bremmer F, Hoffmann KP (1993) Optokinetic and pursuit system: a case report. Behav Brain Res 57(1):21–29
Ino T, Inoue Y, Kage M, Hirose S, Kimura T, Fukuyama H (2002) Mental navigation in humans is processed in the anterior bank of the parieto-occipital sulcus. Neurosci Lett 322(3):182–186
Kao GW, Morrow MJ (1994) The relationship of anticipatory smooth eye movement to smooth pursuit initiation. Vision Res 34(22):3027–3036
Kimmig H, Greenlee MW, Huethe F, Mergner T (1999) MR-eyetracker: a new method for eye movement recording in functional magnetic resonance imaging. Exp Brain Res 126(3):443–449
Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T (2001) Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res 141(2):184–194
Kleinschmidt A, Thilo KV, Büchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16(4):873–882
Kolmel HW, Nabel HJ (1989) Optokinetic nystagmus in homonymous hemianopia due to a strictly occipital lesion. Eur Arch Psychiatry Neurol Sci 238(4):199–202
Konen CS, Kleiser R, Seitz RJ, Bremmer F (2004) The encoding of saccadic eye movements within the human posterior parietal cortex. Neuroimage 22(1):304–314
Krauzlis RJ (2004) Recasting the smooth-pursuit eye movement system. J Neurophysiol 91(2):591–603
Kutz DF, Fattori P, Gamberini M, Breveglieri R, Galletti C (2003) Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Exp Brain Res 149(1):83–95
Leigh RJ, Zee DS (1999) The neurology of eye movements. Oxford University Press, London
Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the ketamine-anesthetized monkey. Optokinetic and blood oxygenation level-dependent responses. Exp Brain Res 143(3):359–372
Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth-pursuit eye movements. Annu Rev Neurosci 10:97–129
Luna B, Thulborn KR, Strojwas MH, McCurtain BJ, Berman RA, Genovese CR, Sweeney JA (1998) Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb Cortex 8(1):40–47
McKeefry DJ, Zeki S (1997) The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120:2229–2242
Miall RC, Imamizu H, Miyauchi S (2000) Activation of the cerebellum in coordinated eye and hand tracking movements: an fMRI study. Exp Brain Res 135(1):22–33
Moschner C, Crawford TJ, Heide W, Trillenberg P, Kömpf D, Kennard C (1999) Deficits of smooth pursuit initiation in patients with degenerative cerebellar lesions. Brain 122:2147–2158
Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol 60(2):604–620
Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kömpf D, Seitz RJ, Heide W (2004) Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp 22(2):155–164
Noda H (1991) Cerebellar control of saccadic eye movements: its neural mechanisms and pathways. Jpn J Physiol 41:351–368
O’Driscoll GA, Wolff AL, Benkelfat C, Florencio PS, Lal S, Evans AC (2000) Functional neuroanatomy of smooth pursuit and predictive saccades. Neuroreport 11(6):1335–1340
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113
Paus T (1996) Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34(6):475–483
Petit L, Haxby JV (1999) Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 82(1):463–471
Petit L, Orssaud C, Tzourio N, Salamon G, Mazoyer B, Berthoz A (1993) PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. J Neurophysiol 69(4):1009–1017
Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B (1996) Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci 16(11):3714–3726
Petit L, Clark VP, Ingeholm J, Haxby JV (1997) Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77(6):3386–3390
Pola J, Wyatt HJ (1985) Active and passive smooth eye movements: effects of stimulus size and location. Vision Res 25(8):1063–1076
Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36:1004–1022
Rosano C, Krisky CM, Welling JS, Eddy WF, Luna B, Thulborn KR, Sweeney JA (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12(2):107–115
Schaafsma SJ, Duysens J (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol 76(6):4056–4068
Schlack A, Hoffmann KP, Bremmer F (2002) Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16(10):1877–1886
Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque area VIP for smooth-pursuit eye movements. J Physiol 551:551–561
Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic Press, New York
Schmid A, Rees G, Frith C, Barnes G (2001) An fMRI study of anticipation and learning of smooth-pursuit eye movements in humans. Neuroreport 12(7):1409–1414
Seitz RJ, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292
Shmuel A, Yacoub E, Pfeuffer J, Vand de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210
Stephan T, Mascolo A, Yousry TA, Bense S, Brandt T, Dieterich M (2002) Changes in cerebellar activation pattern during two successive sequences of saccades. Hum Brain Mapp 16:63–70
Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart
Tanabe J, Tregellas J, Miller D, Ross RG, Freedman R (2002) Brain activation during smooth-pursuit eye movements. Neuroimage 17(3):1315–1324
Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69(1):128–142
Ter Braak JWG (1936) Untersuchungen über optokinetischen Nystagmus. Arch Neerl Physiol 21:309–376
Tian JR, Lynch JC (1996) Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. J Neurophysiol 76(4):2740–2753
Von Noorden GK, Mackensen G (1962) Pursuit movements of normal and amblyopic eyes. Am J Ophthalmol 53:325–336
Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt T (1996) Deactivation of human visual cortex during involuntary ocular oscillations, A PET activation study. Brain 119:101–110
Wojciulik E, Kanwisher N, Driver J (1998) Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J Neurophysiol 79(3):1574–1578
Wyatt HJ, Pola J (1988) Predictive behavior of optokinetic eye movements. Exp Brain Res 73(3):615–626
Acknowledgements
This research was supported by HFSP (RG0149/1999-B), EU-Eurokinesis (QLRT-2001-00151), and SFB 194 (A 13). The authors thank Erika Raedisch for excellent technical assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Konen, C.S., Kleiser, R., Seitz, R.J. et al. An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165, 203–216 (2005). https://doi.org/10.1007/s00221-005-2289-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00221-005-2289-7