Skip to main content
Log in

First description of a laccase-like enzyme in soil algae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Laccases (EC 1.10.3.2) are versatile multi-copper oxidases so far found in higher plants, fungi, insects, prokaryotes and lichens. In the present study, the production of an extracellular laccase-like enzyme by the coccoid green soil alga Tetracystis aeria was investigated and the enzyme was partly characterized, thereby providing the first description of a laccase-like enzyme in soil algae. Enzyme production in algae cultures was considerably increased by addition of the fungal laccase inducer copper sulphate. Maximal enzyme production was observed during the stationary growth phase. Peroxidase or tyrosinase activity was not detected. The native enzyme exhibits an apparent molecular mass of about 212 kDa as observed with size exclusion chromatography and about 210–260 kDa as estimated by zymograms. The enzyme efficiently oxidizes 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ) and the anthraquinone dye Acid Blue 62, while guaiacol and Remazol Brilliant Blue R are only poorly oxidized. The apparent kinetic parameters obtained for ABTS, 2,6-DMP and SGZ oxidation are within the range reported for fungal laccases. Oxidation of the phenolic substrate 2,6-DMP displays a remarkably high pH optimum (pH 8.0–8.5), which is interesting with respect to potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Oesterreicher (1990) and Shtina (1974) include the cyanobacteria in the term “soil algae”. Cyanobacteria can be estimated to contribute about 20–30% of the total cell numbers of both pro- and eukaryotic algae in temperate farmland soils (Zancan et al. 2006).

References

  • Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–631

    Article  CAS  Google Scholar 

  • Baker DE, Senft JP (1995) Copper. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie Academic & Professional Press, London, pp 179–205

    Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bischoff H, Bold HC (1963) Some soil algae from enchanted rock and related algal species. Phycological Studies IV. The University of Texas publication 6318, Texas

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1931:1456–1462

    Article  Google Scholar 

  • Brown RM Jr, Bold HC (1964) Comparative studies of the algal genera Tetracystis and Chlorococcum. Phycological studies V. The University of Texas publication 6417, Texas

  • Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114–122

    Article  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolourization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Das N, Sengupta S, Mukherjee M (1997) Importance of laccase in vegetative growth of Pleurotus florida. Appl Environ Microbiol 63:4120–4122

    CAS  PubMed  Google Scholar 

  • Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245:399–401

    Article  CAS  PubMed  Google Scholar 

  • Durrens P (1981) The phenoloxidases of the ascomycete Podospora anserina: the three forms of the major laccase activity. Arch Microbiol 130:121–124

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  PubMed  Google Scholar 

  • Ettl H, Gaertner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2009) Laccases: a never-ending story. Cell Mol Life Sci. doi:10.1007/s00018-009-0169-1

  • Grassin C, Dubourdieu D (1989) Quantitative determination of Botrytis Laccase in musts and wines by the syringaldazine test. J Sci Food Agric 48:316–369

    Article  Google Scholar 

  • Johnson DL, Thompson JL, Brinkmann SM, Schuller KA, Martin LL (2003) Electrochemical characterization of purified Rhus vernicifera Laccase: voltammetric evidence for a sequential four-electron transfer. Biochemistry 42:10229–10237

    Article  CAS  PubMed  Google Scholar 

  • Junghanns C, Parra R, Keshavarz T, Schlosser D (2008) Towards higher laccase activities produced by aquatic ascomycetous fungi through combination of elicitors and an alternative substrate. Eng Life Sci 8:277–285

    Article  CAS  Google Scholar 

  • Junghanns C, Pecyna MJ, Böhm D, Jehmlich N, Martin C, von Bergen M, Schauer F, Hofrichter M, Schlosser D (2009) Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 84:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • La Russa M, De Biasi MG, Chiaiese P, Palomba F, Pollio A, Pinto G, Filippone E (2008) Screening of green microalgae species for extracellular phenoloxidase activity useful for wastewater phycoremediation. In: Proceedings of the 4th European Bioremediation Conference, Chania, Greece (September 03–06, 2008)

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV (2006) Co-occurence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order Peltigerineae. Ann Bot 98:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Laufer Z, Beckett RP, Minibayeva FV, Lüthje S, Böttger M (2009) Diversity of laccases from lichens in suborder Peltigerineae. Bryologist 112:418–426

    Article  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    Article  CAS  Google Scholar 

  • Lima SAC, Castro PML, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15:137–142

    Article  CAS  Google Scholar 

  • Lisov AV, Zavarzina AG, Zavarzin AA, Leontievsky AA (2007) Laccases produced by lichens of the order Peltigerales. FEMS Microbiol Lett 275:46–52

    Article  CAS  PubMed  Google Scholar 

  • Mai C, Majcherczyk A, Hüttermann A (2000) Chemo-enzymatic synthesis and characterization of graft copolymers from lignin and acrylic compounds. Enzyme Microb Technol 27:167–175

    Article  CAS  PubMed  Google Scholar 

  • Mansur M, Arias ME, Copa-Patiño JL, Flärdh M, González AE (2003) The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities. Mycologia 95:1013–1020

    Article  CAS  Google Scholar 

  • Martin C, Pecyna M, Kellner H, Jehmlich N, Junghanns C, Benndorf D, von Bergen M, Schlosser D (2007) Purification and biochemical characterization of a laccase from the aquatic fungus Myrioconium sp. UHH 1–13-18–4 and molecular analysis of the laccase-encoding gene. Appl Microbiol Biotechnol 77:613–624

    Article  CAS  PubMed  Google Scholar 

  • Massalski A, Mroziñska T, Olech M (2001) Ultrastructural observations on five pioneer soil algae from ice denuded areas (King George Island, West Antarctica). Polar Biosci 14:61–70

    Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565

    Article  CAS  Google Scholar 

  • Møller HJ, Poulsen JH (2002) Staining of glycoproteins/proteoglycans in SDS-Gels. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press, Totowa, pp 773–777

    Google Scholar 

  • Nakano T (1983) Taxonomical studies on the genus Tetracystis (Chlorosarcinales, Chlorophyta) from Japanese soils. J Sci Hiroshima Univ Series B, Div 2 (Botany) 18:115–172

    Google Scholar 

  • Naki A, Varfolomeev SD (1981) Inhibition mechanism of Polyporus versicolor laccase by halide ions. Biokhimiia 46:1694–1702

    Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Niemetz R, Gross GG (2003) Ellagitannin biosynthesis: laccase-catalyzed dimerization of tellimagrandin II to cornusiin E in Tellima grandiflora. Phytochemistry 64:1197–1201

    Article  CAS  PubMed  Google Scholar 

  • Niladevi KN, Jacob N, Prema P (2008) Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochem 43:654–660

    Article  CAS  Google Scholar 

  • Nitta K, Kataoka K, Sakurai T (2002) Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. J Inorg Biochem 91:125–131

    Article  CAS  PubMed  Google Scholar 

  • Oesterreicher W (1990) Ökologische Bedeutung der Algen im Boden. Nachrichtenbl Deut Pflanzenschutzd 42:122–126

    Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper Induction of Laccase Isoenzymes in the Ligninolytic Fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  CAS  PubMed  Google Scholar 

  • Rehm H, Letzel T (2010) Der Experimentator: Proteinbiochemie/Proteomics, 6th edn. Spektrum Akademischer Verlag, Heidelberg, pp 339–361

    Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  PubMed  Google Scholar 

  • Round FE (1984) The ecology of algae. Cambridge University Press Archive, Cambridge

    Google Scholar 

  • Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182

    Article  CAS  PubMed  Google Scholar 

  • Safonova E, Reisser W (2005) Growth promoting and inhibiting effects of extracellular substances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycol Res 53:189–193

    Google Scholar 

  • Safonova E, Kvitko K, Kuschk P, Möder M, Reisser W (2005) Biodegradation of Phenanthrene by the Green Alga Scenedesmus obliquus ES-55. Eng Life Sci 5:234–239

    Article  CAS  Google Scholar 

  • Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102

    Article  Google Scholar 

  • Seckbach J (ed) (2007) Algae and cyanobacteria in extreme environments. Springer, Secaucus

    Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    Article  CAS  Google Scholar 

  • Shtina EA (1974) The principal directions of experimental investigations in soil algology with emphasis on the USSR. Geoderma 12:151–156

    Article  Google Scholar 

  • Sterijades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wood DA (1980) Production, purification and properties of extracellular laccase of Agaricus bisporus. J Gen Microbiol 117:327–338

    CAS  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    CAS  PubMed  Google Scholar 

  • Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ 112:1–12

    Article  Google Scholar 

  • Ziegler R, Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. Beitr Biol Pflanzen 41:11–37

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to François Buscot (Halle) and Susanne Theuerl (Halle) for helpful advice and discussions. The programme topic CITE (Chemicals in the Environment) of the Helmholtz Association of German Research Centres provided resources for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Otto.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, B., Schlosser, D. & Reisser, W. First description of a laccase-like enzyme in soil algae. Arch Microbiol 192, 759–768 (2010). https://doi.org/10.1007/s00203-010-0603-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0603-7

Keywords