Skip to main content
Log in

Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793 bp encoding 930 aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aa:

Amino acids(s)

bp:

Base pair(s)

kb:

1000 bp

ORF:

Open reading frame

UTR:

Untranslated region(s)

′ (prime):

Denotes a truncated gene at the indicated side

TPS:

Trehalose-6-phosphate synthase

TPP:

Trehalose-6-phosphate phosphatase

STRE:

Stress response element

T6P:

Trehalose-6-phosphate

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    PubMed  CAS  Google Scholar 

  3. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  Google Scholar 

  4. Avron M (1986) The osmotic components of halotolerant algae. Trends Biochem Sci 11:5–6

    Article  CAS  Google Scholar 

  5. Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    Article  PubMed  CAS  Google Scholar 

  6. Blazquez MA, Lagunas R, Gancedo C, Gancedo JM (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett 329:51–54

    Article  PubMed  CAS  Google Scholar 

  7. Butler JE, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  PubMed  CAS  Google Scholar 

  8. Chitlaru E, Pick U (1991) Regulation of glycerol synthesis in response to osmotic changes in Dunaliella. Plant Physiol 96:50–60

    Article  PubMed  CAS  Google Scholar 

  9. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  PubMed  CAS  Google Scholar 

  10. De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(Pt 1):199–208

    PubMed  Google Scholar 

  11. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  12. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  13. Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723

    Article  PubMed  CAS  Google Scholar 

  14. Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    PubMed  CAS  Google Scholar 

  15. Guan ZW, Meng XZ, Sun ZH, Xu ZK, Song RT (2008) Characterization of duplicated Dunaliella viridis SPT1 genes provides insights into early gene divergence after duplication. Gene 423:36–42

    Article  PubMed  CAS  Google Scholar 

  16. Hohmann S, Neves MJ, de Koning W, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23:281–289

    Article  PubMed  CAS  Google Scholar 

  17. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  18. Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    Article  PubMed  CAS  Google Scholar 

  19. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:84–94

    Google Scholar 

  20. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  21. Meng XZ, Xu ZK, Song RT (2007) Construction and identification of a bacterial artificial chromosome (BAC) library93 of Dunaliella viridis. J Shanghai Univ (Natural Science Edition) 13:88–93

    CAS  Google Scholar 

  22. Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K et al (1995) Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27:110–122

    Article  PubMed  CAS  Google Scholar 

  23. Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  Google Scholar 

  24. Peeler TC, Stephenson MB, Einspahr KJ, Thompson GA (1989) Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol 89:970–976

    Article  PubMed  CAS  Google Scholar 

  25. Petzold EW, Himmelreich U, Mylonakis E, Rude T, Toffaletti D et al (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74:5877–5887

    Article  PubMed  CAS  Google Scholar 

  26. Quintero FJ, Garciadeblas B, Rodriguez-Navarro A (1996) The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8:529–537

    Article  PubMed  CAS  Google Scholar 

  27. Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782

    Article  PubMed  CAS  Google Scholar 

  28. Smale ST (1997) Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim Biophys Acta 1351:73–88

    PubMed  CAS  Google Scholar 

  29. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30:185–192

    Article  PubMed  CAS  Google Scholar 

  30. Sun XM, Tang YP, Meng XZ, Zhang WW, Li S et al (2006) Sequencing and analysis of a genomic fragment provide an insight into the Dunaliella viridis genomic sequence. Acta Biochim Biophys Sin (Shanghai) 38:812–820

    Article  CAS  Google Scholar 

  31. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  PubMed  CAS  Google Scholar 

  32. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S et al (2000) The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in Xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  PubMed  CAS  Google Scholar 

  33. Wang W, Xu ZK, Song RT (2006) Identification of two Dunaliella sp. based on nuclear ITS rDNA. J Shanghai Univ (Natural Science Edition) 12:84–88

    CAS  Google Scholar 

  34. Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S et al (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet 252:470–482

    PubMed  CAS  Google Scholar 

  35. Zahringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  PubMed  CAS  Google Scholar 

  36. Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B et al (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Johan M. Thevelein (Katholieke Universiteit Leuven, Belgium) for providing yeast tps1Δ mutant, Prof. Hohmann Stefan (Göteborg University, Sweden) for providing yeast tps2Δ mutant, Prof. Alonso Rodriguez Navarro (Polytechnic University, Madrid) for providing yeast G19 mutant. This work was supported by the National Natural Sciences Foundation of China (30871278, 30970242 and 3047119), the Ministry of Agriculture of China (2008ZX08003-005, 2008ZX08003-001), Shanghai Municipal Commission of Science and Technology (09DZ2271800), and Key Discipline “Molecular Physiology” of Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2010_354_MOESM1_ESM.doc

Supplement Fig. 1 List of the trehalose biosynthetic proteins involved in this paper. The taxonomic groups are shown on the left side; the accession numbers or protein ids for each protein are indicated. VcTPS is derived from JGI Volvox carteri f. nagariensis version 1.0 while the rest are from GenBank. Colors show each different protein type. (DOC 1387 kb)

Supplement Fig. 2 (A, B) Alignment of TPS or TPP domain from various Group II TPS genes including DvTPS. (DOC 16948 kb)

11033_2010_354_MOESM3_ESM.doc

Supplement Fig. 3 Cis-elements analysis of the 1.6 kb promoter region. Nucleotides are numbered on the left. Transcription factor-binding sites are underlined. Arrows indicate the predicted transcription start site (or Inr). (DOC 5628 kb)

11033_2010_354_MOESM4_ESM.doc

Supplement Fig. 4 Southern blot analysis of the DvTPS gene. Genomic DNA (5ug) of D. viridis was digested with HindIII or BamHI. The filter was probed with DIG-labeled DvTPS cDNA fragments without these restriction enzyme sites. The sizes of the bands are also indicated on the figure. (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Wang, F., Meng, X. et al. Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis . Mol Biol Rep 38, 2241–2248 (2011). https://doi.org/10.1007/s11033-010-0354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0354-1

Keywords