Skip to main content
Log in

A twin study of auditory processing indicates that dichotic listening ability is a strongly heritable trait

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We administered tests commonly used in the diagnosis of auditory processing disorders (APDs) to twins recruited from the general population. We observed significant correlations in test scores between co-twins. Our analyses of test score correlations among 106 MZ and 33 DZ twin pairs indicate that dichotic listening ability is a highly heritable trait. Dichotic listening is the ability to identify and distinguish different stimuli presented simultaneously to each ear. Deficits in dichotic listening skills indicate a lesion or defect in interhemispheric information processing. Such defects or lesions can be prominent in elderly listeners, language-impaired children, stroke victims, and individuals with PAX6 mutations. Our data indicates that other auditory processing abilities are influenced by shared environment. These findings should help illuminate the etiology of APDs, and help to clarify the relationships between auditory processing abilities and learning/language disorders associated with APDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amos NE, Humes LE (1998) SCAN test–retest reliability for first- and third-grade children. J Speech Lang Hear Res 41:834–845

    PubMed  CAS  Google Scholar 

  • Baechtel FS, Monson KL, Forsen GE, Budowle B, Kearney JJ (1991) Tracking the violent criminal offender through DNA typing profiles—a national database system concept. Exs 58:356–360

    PubMed  CAS  Google Scholar 

  • Bailey PJ, Snowling MJ (2002) Auditory processing and the development of language and literacy. Br Med Bull 63:135–146

    Article  PubMed  Google Scholar 

  • Bamiou DE, Musiek FE, Luxon LM (2001) Aetiology and clinical presentations of auditory processing disorders—a review. Arch Dis Child 85:361–365

    Article  PubMed  CAS  Google Scholar 

  • Bamiou DE, Musiek FE, Sisodiya SM, Free SL, Davies RA, Moore A, van Heyningen V, Luxon LM (2004) Deficient auditory interhemispheric transfer in patients with PAX6 mutations. Ann Neurol 56:503–509

    Article  PubMed  CAS  Google Scholar 

  • Bellis TJ (1996) Assessment and management of central auditory processing disorders in the educational setting. Singular Publishing Group, San Diego

    Google Scholar 

  • Bellis TJ, Wilber LA (2001) Effects of aging and gender on interhemispheric function. J Speech Lang Hear Res 44:246–263

    Article  PubMed  CAS  Google Scholar 

  • Benasich AA, Tallal P (2002) Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res 136:31–49

    Article  PubMed  Google Scholar 

  • Bishop DV, Bishop SJ, Bright P, James C, Delaney T, Tallal P (1999) Different origin of auditory and phonological processing problems in children with language impairment: evidence from a twin study. J Speech Lang Hear Res 42:155–168

    PubMed  CAS  Google Scholar 

  • Bornstein SP, Wilson RH, Cambron NK (1994) Low- and high-pass filtered Northwestern University Auditory Test No. 6 for monaural and binaural evaluation. J Am Acad Audiol 5:259–264

    PubMed  CAS  Google Scholar 

  • Cestnick L, Jerger J (2000) Auditory temporal processing and lexical/nonlexical reading in developmental dyslexics. J Am Acad Audiol 11:501–513

    PubMed  CAS  Google Scholar 

  • Chermak GD, Musiek FE (1997) Central auditory processing disorders. Singular Publishing Group, San Diego

    Google Scholar 

  • Chermak GD, Somers EK, Seikel JA (1998) Behavioral signs of central auditory processing disorder and attention deficit hyperactivity disorder. J Am Acad Audiol 9:78–84; quiz 85

    PubMed  CAS  Google Scholar 

  • Chermak GD, Hall JW III, Musiek FE (1999) Differential diagnosis and management of central auditory processing disorder and attention deficit hyperactivity disorder. J Am Acad Audiol 10:289–303

    PubMed  CAS  Google Scholar 

  • Drayna D, Manichaikul A, de Lange M, Snieder H, Spector T (2001) Genetic correlates of musical pitch recognition in humans. Science 291:1969–1972

    Article  PubMed  CAS  Google Scholar 

  • Elliott LL, Hammer MA (1988) Longitudinal changes in auditory discrimination in normal children and children with language-learning problems. J Speech Hear Disord 53:467–474

    PubMed  CAS  Google Scholar 

  • Elliott LL, Hammer MA, Scholl ME (1989) Fine-grained auditory discrimination in normal children and children with language-learning problems. J Speech Hear Res 32:112–119

    PubMed  CAS  Google Scholar 

  • Emanuel DC (2002) The auditory processing battery: survey of common practices. J Am Acad Audiol 13:93–117; quiz 118–9

    PubMed  Google Scholar 

  • Estourgie-van Burk GF, Bartels M, van Beijsterveldt TC, Delemarre-van de Waal HA, Boomsma DI (2006) Body size in five-year-old twins: heritability and comparison to singleton standards. Twin Res Hum Genet 9:646–655

    Article  PubMed  Google Scholar 

  • Foundas AL, Corey DM, Hurley MM, Heilman KM (2004) Verbal dichotic listening in developmental stuttering: subgroups with atypical auditory processing. Cogn Behav Neurol 17:224–232

    PubMed  Google Scholar 

  • Griffiths TD (2002) Central auditory pathologies. Br Med Bull 63:107–120

    Article  PubMed  Google Scholar 

  • Golding M, Taylor A, Cupples L, Mitchell P (2006) Odds of demonstrating auditory processing abnormality in the average older adult: the Blue Mountains Hearing Study. Ear Hear 27:129–138

    Article  PubMed  Google Scholar 

  • Gordon-Salant S (2005) Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42:9–24

    Article  PubMed  Google Scholar 

  • Hausler R, Levine RA (2000) Auditory dysfunction in stroke. Acta Otolaryngol 120:689–703

    Article  PubMed  CAS  Google Scholar 

  • Hohnen B, Stevenson J (1999) The structure of genetic influences on general cognitive, language, phonological, and reading abilities. Dev Psychol 35:590–603

    Article  PubMed  CAS  Google Scholar 

  • Jerger S (1987) Validation of the pediatric speech intelligibility test in children with central nervous system lesions. Audiology 26:298–311

    PubMed  CAS  Google Scholar 

  • Jerger J, Musiek F (2000) Report of the consensus conference on the diagnosis of auditory processing disorders in school-aged children. J Am Acad Audiol 11:467–474

    PubMed  CAS  Google Scholar 

  • Jerger J, Alford B, Lew H, Rivera V, Chmiel R (1995) Dichotic listening, event-related potentials, and interhemispheric transfer in the elderly. Ear Hear 16:482–498

    Article  PubMed  CAS  Google Scholar 

  • Keith RW (1994) SCAN-A: a test for auditory processing disorders in adolescents and adults. The Psychological Corporation, San Antonio

    Google Scholar 

  • Keith RW (1995) Development and standardization of SCAN-A: test of auditory processing disorders in adolescents and adults. J Am Acad Audiol 6:286–292

    PubMed  CAS  Google Scholar 

  • King WM, Lombardino LJ, Crandell CC, Leonard CM (2003) Comorbid auditory processing disorder in developmental dyslexia. Ear Hear 24:448–456

    Article  PubMed  Google Scholar 

  • Kujala T, Myllyviita K, Tervaniemi M, Alho K, Kallio J, Naatanen R (2000) Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements. Psychophysiology 37:262–266

    Article  PubMed  CAS  Google Scholar 

  • Kyvik KO, Green A, Beck-Nielsen H (1995) Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. Bmj 311:913–917

    PubMed  CAS  Google Scholar 

  • Lench N, Stanier P, Williamson R (1988) Simple non-invasive method to obtain DNA for gene analysis. Lancet 1:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Liu RC (2006) Prospective contributions of transgenic mouse models to central auditory research. Brain Res 1091:217

    Article  PubMed  CAS  Google Scholar 

  • Martin JS, Jerger JF (2005) Some effects of aging on central auditory processing. J Rehabil Res Dev 42:25–44

    Article  PubMed  Google Scholar 

  • Moncrieff DW (2006) Identification of binaural integration deficits in children with the Competing Words Subtest: standard score versus interaural asymmetry. Int J Audiol 45:200–7; discussion 207–10

    Article  PubMed  Google Scholar 

  • Moncrieff DW, Musiek FE (2002) Interaural asymmetries revealed by dichotic listening tests in normal and dyslexic children. J Am Acad Audiol 13:428–437

    PubMed  Google Scholar 

  • Moore DR (2006) Auditory processing disorder (APD)—Potential contribution of mouse research. Brain Res 1091:200

    Article  PubMed  CAS  Google Scholar 

  • Musiek FE (1999) Central auditory tests. Scand Audiol Suppl 51:33–46

    PubMed  CAS  Google Scholar 

  • Musiek F, Gollegly K, Lamb L, Lamb P (1990) Slected issues in screening for central auditory processing dysfunction. Semin Hear 11:372–383

    Article  Google Scholar 

  • Neale MC, Cardon L (1992) Methodology for genetic studies of twins and families. Kluwer, Dordrecht

    Google Scholar 

  • Neale MC, Boker SM, Xie G, Maes HH (1999) Mx: statistical modeling. Department of Psychiatry, Virginia Commonwealth University, Richmond

    Google Scholar 

  • Noffsinger D, Wilson RH, Musiek FE (1994) Department of Veterans Affairs compact disc recording for auditory perceptual assessment: background and introduction. J Am Acad Audiol 5:231–235

    PubMed  CAS  Google Scholar 

  • Noffsinger D, Martinez CD, Andrews M (1996) Dichotic listening to speech: VA-CD data from elderly subjects. J Am Acad Audiol 7:49–56

    PubMed  CAS  Google Scholar 

  • Paul-Brown D, Thompson ME, Catts HW, Chermak GD, Craig CH, Johnston JR, Keith RW, Musiek FE, Robin DA, Sloan C (1996) Central auditory processing: current status of research and implications for clinical practice. Am J Audiol 5:41–53

    Google Scholar 

  • Schow RL, Seikel JA, Chermak GD, Berent M (2000) Central auditory processes and test measures: ASHA 1996 revisited. Am J Audiol 9:63–8

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Korne G, Deimel W, Bartling J, Remschmidt H (1999) The role of phonological awareness, speech perception, and auditory temporal processing for dyslexia. Eur Child Adolesc Psychiatry 8(Suppl 3):28–34

    Article  PubMed  Google Scholar 

  • Springer SP, Searleman A (1978) The ontogeny of hemispheric specialization: evidence from dichotic listening in twins. Neuropsychologia 16:269–281

    Article  PubMed  CAS  Google Scholar 

  • Tillery KL, Katz J, Keller WD (2000) Effects of methylphenidate (Ritalin) on auditory performance in children with attention and auditory processing disorders. J Speech Lang Hear Res 43:893–901

    PubMed  CAS  Google Scholar 

  • Tregouet DA, Ducimetiere P, Tiret L (1997) Testing association between candidate-gene markers and phenotype in related individuals, by use of estimating equations. Am J Hum Genet 61:189–199

    PubMed  CAS  Google Scholar 

  • Vogel F, Motulsky A (1997) Diagnosis of zygosity. Human genetics: problems and approaches, 3rd edn. Springer, Berlin, pp 761–767

    Google Scholar 

  • Wilson RH, Preece JP, Salamon DL, Sperry JL, Bornstein SP (1994) Effects of time compression and time compression plus reverberation on the intelligibility of Northwestern University Auditory Test No. 6. J Am Acad Audiol 5:269–277

    PubMed  CAS  Google Scholar 

  • Wright BA, Lombardino LJ, King WM, Puranik CS, Leonard CM, Merzenich MM (1997) Deficits in auditory temporal and spectral resolution in language-impaired children. Nature 387:176–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIDCD intramural funds Z01-DC000035, Z01-DC000039, Z01-DC000046, and Z01-DC000064. We thank Frank Musiek, who developed and provided us with the COLT. Thanks to James Jerger and Jeff Martin, who developed the University of Texas dichotic consonant–vowel–consonant test stimuli (UT-CVCs). We thank Jessica Barrett, Jennifer Bentley, Kim Laws, Tom and Mary Ann Mastroianni, Erin McAlister, Kara Schvartz, Allyson Segar, Pamela Buethe and Lauren Wisman for their valuable help in administering hearing and auditory processing tests at the Twins Festivals. Our thanks to Susan Sullivan (NIDCD) and Andrew Griffith (NIDCD) for critically reading the manuscript. We thank the anonymous reviewers, whose suggestions improved the manuscript. We thank Sandy Miller and the entire Twins Day Festival committee for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Morell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2007_384_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, R.J., Brewer, C.C., Ge, D. et al. A twin study of auditory processing indicates that dichotic listening ability is a strongly heritable trait. Hum Genet 122, 103–111 (2007). https://doi.org/10.1007/s00439-007-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0384-5

Keywords