Abstract
Topology optimization is a highly developed tool for structural design and is by now being extensively used in mechanical, automotive and aerospace industries throughout the world. Gradient-based topology optimization algorithms may efficiently solve fine-resolution problems with thousands and up to millions of design variables using a few hundred (finite element) function evaluations (and even less than 50 in some commercial codes). Nevertheless, non-gradient topology optimization approaches that require orders of magnitude more function evaluations for extremely low resolution examples keep appearing in the literature. This forum article discusses the practical and scientific relevance of publishing papers that use immense computational resources for solving simple problems for which there already exist efficient solution techniques.


Notes
Despite its name the ESO method may in fact be categorized as a gradient-based method since it uses sensitivity analysis to determine discrete design updates.
Wu and Tseng (2010) report a compliance value of c = 64.44, however, this value was not reproducible by using the FE-solver from the 99-line Matlab code by Sigmund (2001). Exact agreement was however obtained when comparing objective values with the original examples presented in Wang and Tai (2005).
For some reason the number of iterations for the same problem solved using density filtering is an order of magnitude higher (455). The reason for this difference will be investigated in future work.
Claiming that GTO methods yield non-discrete, grey-scale design is not enough since these results can be easily thresholded as demonstrated in Section 2.1.
References
Aguilar Madeira JF, Pina HL, Rodrigues HC (2010) GA topology optimization using random keys for tree encoding of structures. Struct Multidisc Optim 40(1–6):227–240. doi:10.1007/s00158-008-0353-1
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393
Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43:1–16. doi:10.1007/s00158-010-0594-7. MATLAB code available online at: www.topopt.dtu.dk
Balamurugan R, Ramakrishnan C, Singh N (2008) Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl Soft Comput 8(4):1607–1624. doi:10.1016/j.asoc.2007.10.022
Balamurugan R, Ramakrishnan C, Swaminathan N (2011) A two phase approach based on skeleton convergence and geometric variables for topology optimization using genetic algorithm. Struct Multidisc Optim. doi:10.1007/s00158-010-0560-4
Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202
Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224
Bendsøe MP, Sigmund O (2004) Topology optimization—theory, methods and applications. Springer, Berlin
Bruns TE, Sigmund (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193:3973–4000
Cox SJ, Dobson DC (1999) Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 59(6):2108–2120
Dudiy SV, Zunger A (2006) Searching for alloy configurations with target physical properties: impurity design via a genetic algorithm inverse band structure approach. Phys Rev Lett 97(4):046401. doi:10.1103/PhysRevLett.97.046401
Gersborg A, Sigmund O (2011) Maximizing opto-mechanical interaction using topology optimization. Int J Numer Methods Eng. doi:10.1002/nme.3133
Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254
Halkjær S, Sigmund O, Jensen JS (2005) Inverse design of phononic crystals by topology optimization. Z Kristallogr 220(9–10):895–905
Hemp W (1973) Optimum structures. Clarendon Press, Oxford
Jain C, Saxena A (2010) An improved material-mask overlay strategy for topology optimization of structures and compliant mechanisms. J Mech Des 132(6):061006. doi:10.1115/1.4001530
Kaveh A, Hassani B, Shojaee S, Tavakkoli SM (2008) Structural topology optimization using ant colony methodology. Eng Struct 30(9):2559–2565. doi:10.1016/j.engstruct.2008.02.012
Kawamoto A, Bendsøe MP, Sigmund O (2004) Planar articulated mechanism design by graph theoretical enumeration. Struct Multidisc Optim 27(4):295–299
Lazarov B, Sigmund O (2011) Filters in topology optimization as a solution to Helmholtz type differential equation. Int J Numer Methods Eng. doi:10.1002/nme.3072. Online first
Lee K, Geem Z (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798. doi:10.1016/j.compstruc.2004.01.002
Lewinski T, Zhou M, Rozvany G (1994) Extended exact solutions for least-weight truss layouts–part I: cantilever with a horizontal axis of symmetry. Int J Mech Sci 36(5):375–398. doi:10.1016/0020-7403(94)90043-4
Luh G, Chueh C (2004) Multi-modal topological optimization of structure using immune algorithm. Comput Methods Appl Mech Eng 193(36–38):4035–4055. doi:10.1016/j.cma.2004.02.013
Luh GC, Lin CY (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9(4):1343–1353. doi:10.1016/j.asoc.2009.06.001
Luh GC, Lin CY, Lin YS (2011) A binary particle swarm optimization for continuum structural topology optimization. Appl Soft Comput 11(2):2833–2844. doi:10.1016/j.asoc.2010.11.013
Michell AGM (1904) The limit of economy of material in frame structures. Philos Mag 8(6):589–597
Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69
Nagendra S, Jestin D, Gürdal Z, Haftka RT, Watson LT (1996) Improved genetic algorithm for the design of stiffened composite panels. Comput Struct 58(3):543–555. doi:10.1016/0045-7949(95)00160-I
Niu B, Olhoff N, Lund E, Cheng G (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114. doi:10.1016/j.ijsolstr.2010.04.008
Ohsaki M, Katoh N, Kinoshita T, Tanigawa S, Avis D, Streinu I (2009) Enumeration of optimal pin-jointed bistable compliant mechanisms with non-crossing members. Struct Multidisc Optim 37(6):645–651. doi:10.1007/s00158-008-0258-z
Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434
Prasad J, Diaz AR (2006) Synthesis of bistable periodic structures using topology optimization and a genetic algorithm. J Mech Des 128(6):1298–1306. doi:10.1115/1.2338576
Shim PY, Manoochehri S (1997) Generating optimal configurations in structural design using simulated annealing. Int J Numer Methods Eng 40(6):1053–1069
Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidisc Optim 21:120–127. doi:10.1007/s001580050176. MATLAB code available online at: www.topopt.dtu.dk
Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424
Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25(2):227–239. doi:10.1007/s10409-009-0240-z
Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans R Soc Lond Ser A: Math Phys Sci 361:1001–1019
Sigmund O, Hougaard K (2008) Geometrical properties of optimal photonic crystals. Phys Rev Lett 100(15):153904
Sokol T, Lewinski T (2010) On the solution of the three forces problem and its application in optimal designing of a class of symmetric plane frameworks of least weight. Struct Multidisc Optim 42:835–853
Sokołowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272
Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027. doi:10.1002/nme.1259
Stolpe M, Bendsøe M (2010) Global optima for the Zhou–Rozvany problem. Struct Multidisc Optim. doi:10.1007/s00158-010-0574-y. Early view
Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidisc Optim 22(3):179–187
Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246
Wang M, Zhou S (2004) Phase field: a variational method for structural topology optimization. CMES—Comput Model Eng Sci 6(6):547–566
Wang F, Jensen J, Sigmund O (2011a) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J Opt Soc Am B: Opt Phys. doi:10.1007/s00158-010-0602-y
Wang F, Lazarov B, Sigmund O (2011b) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim. doi:10.1007/s00158-010-0602-y. Online first
Wang S, Tai K (2005) Structural topology design optimization using genetic algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36–38):3749–3770. doi:10.1016/j.cma.2004.09.003
Wu CH, Tseng KY (2010) Topology optimization of structures using modified binary differential evolution. Struct Multidisc Optim 42:939–953
Xie YM, Steven GP (1997) Evolutionary structural optimisation. Springer, Berlin
Yang L, Lavrinenko AV, Hvam JM, Sigmund O (2009) Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization. Appl Phys Lett 95:261101
Yoon GH, Sigmund O (2008) A monolithic approach for topology optimization of electrostatically actuated devices. Comput Methods Appl Mech Eng 197:4062–4075. doi:10.1016/j.cma.2008.04.004
Zhou H (2010) Topology optimization of compliant mechanisms using hybrid discretization model. J Mech Des 132(11):111003. doi:10.1115/1.4002663
Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336
Acknowledgements
The author would like to thank Rafael Haftka, George Rozvany, Ming Zhou and members of the TopOpt-group (www.topopt.dtu.dk) for fruitful discussions with regards to the conclusions and recommendations given in this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sigmund, O. On the usefulness of non-gradient approaches in topology optimization. Struct Multidisc Optim 43, 589–596 (2011). https://doi.org/10.1007/s00158-011-0638-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00158-011-0638-7