Skip to main content
Log in

Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that craniofacial bone marrow stromal cells (BMSCs) have a strong osteogenic potential. However, the mechanism by which BMSCs of various embryonic origins develop diverse osteogenic potentials remains unclear. To investigate the mechanisms regulating osteoblast differentiation in two different types of BMSCs, we compared the temporal and spatial mRNA and protein expression patterns of Satb2 and its downstream gene Hoxa2 by using real-time polymerase chain reaction, Western blotting and fluorescent immunostaining in mandible BMSCs (M-BMSCs) and tibia BMSCs (T-BMSCs) undergoing osteoblast differentiation. Higher levels of alkaline phosphatase, greater calcium accumulation and earlier expression of Runx2 were observed in osteogenic-induced M-BMSCs compared with T-BMSCs. Low levels of Satb2 were detected in both types of uninduced BMSCs but the majority of SATB2 was located in the nuclei of M-BMSCs. Notably, Satb2 was expressed earlier in M-BMSCs and Hoxa2, a downstream target of Satb2, was not expressed in uninduced M-BMSCs or during osteoblast differentiation, just as during embryonic mandible development. In contrast, Hoxa2 was reactivated in T-BMSCs during osteoblast differentiation. Based on these results, we conclude that SATB2 plays a different role during osteoblast differentiation of M-BMSCs and T-BMSCs. The earlier activation of Satb2 expression in M-BMSCs compared with T-BMSCs might explain the stronger osteogenic potential of M-BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S (2010) Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89:1293–1298

    Article  PubMed  CAS  Google Scholar 

  • Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768

    Article  PubMed  CAS  Google Scholar 

  • Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW (2009) Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 337:63–77

    Article  PubMed  CAS  Google Scholar 

  • Boda-Heggemann J, Regnier-Vigouroux A, Franke WW (2009) Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-)cadherin-containing junctions in non-endothelial cells. Cell Tissue Res 335:49–65

    Article  PubMed  CAS  Google Scholar 

  • Britanova O, Akopov S, Lukyanov S, Gruss P, Tarabykin V (2005) Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur J Neurosci 21:658–668

    Article  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  • Creuzet S, Couly G, Vincent C, Le Douarin NM (2002) Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129:4301–4313

    PubMed  CAS  Google Scholar 

  • Dobreva G, Dambacher J, Grosschedl R (2003) SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 17:3048–3061

    Article  PubMed  CAS  Google Scholar 

  • Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    Article  PubMed  CAS  Google Scholar 

  • Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Dunlop LL, Hall BK (1995) Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis. Int J Dev Biol 39:357–371

    PubMed  CAS  Google Scholar 

  • Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80:371–378

    Article  PubMed  CAS  Google Scholar 

  • Fedarko NS, Bianco P, Vetter U, Robey PG (1990) Human bone cell enzyme expression and cellular heterogeneity: correlation of alkaline phosphatase enzyme activity with cell cycle. J Cell Physiol 144:115–121

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K, Gautier P, McGill N, Hayward C, Firth H, Markham AF, Fantes JA, Bonthron DT (2003) Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet 12:2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T (1993) Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331

    Article  PubMed  CAS  Google Scholar 

  • Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS (2000) Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127:5355–5365

    PubMed  CAS  Google Scholar 

  • Hall BK, Miyake T (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 186:107–124

    Article  CAS  Google Scholar 

  • Hassan MQ, Gordon JA, Beloti MM, Croce CM, Wijnen AJ van, Stein JL, Stein GS, Lian JB (2010) A network connecting Runx2, SATB2, and the miR-23a 27a 24–2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107:19879–19884

    Article  PubMed  CAS  Google Scholar 

  • Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423:326–331

    Article  PubMed  CAS  Google Scholar 

  • Ho M, Yu D, Davidsion MC, Silva GA (2006) Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation. Biomaterials 27:4333–4339

    Article  PubMed  CAS  Google Scholar 

  • Horikawa K, Radice G, Takeichi M, Chisaka O (1999) Adhesive subdivisions intrinsic to the epithelial somites. Dev Biol 215:182–189

    Article  PubMed  CAS  Google Scholar 

  • Javazon EH, Colter DC, Schwarz EJ, Prockop DJ (2001) Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 19:219–225

    Article  PubMed  CAS  Google Scholar 

  • Kanzler B, Kuschert SJ, Liu YH, Mallo M (1998) Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125:2587–2597

    PubMed  CAS  Google Scholar 

  • Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M (2009) Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol 132:533–546

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  PubMed  CAS  Google Scholar 

  • Kiener HP, Stipp CS, Allen PG, Higgins JMG, Brenner MB (2006) The cadherin-11 cytoplasmic juxtamembrane domain promotes α-catenin turnover at adherens junctions and intercellular motility. Mol Biol Cell 17:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  • Koole R (1994) Ectomesenchymal mandibular symphysis bone graft: an improvement in alveolar cleft grafting? Cleft Palate Craniofac J 31:217–223

    Article  PubMed  CAS  Google Scholar 

  • Kostetskii I, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL (2005) Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res 96:346–354

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463

    Article  PubMed  Google Scholar 

  • Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135:2845–2854

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Kostetskii I, Radice GL (2004) N-cadherin is not essential for limb mesenchymal chondrogenesis. Dev Dyn 232:336–344

    Article  Google Scholar 

  • Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y (2005) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 20:399–409

    Article  PubMed  CAS  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1991) Cell movements and control of patterned tissue assembly during craniofacial development. J Craniofac Genet Dev Biol 11:192–213

    PubMed  CAS  Google Scholar 

  • Pasqualetti M, Ori M, Nardi I, Rijli FM (2000) Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127:5367–5378

    PubMed  CAS  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181:64–78

    Article  PubMed  CAS  Google Scholar 

  • Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM, Peitsch WK (2008) Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 334:401–422

    Article  PubMed  CAS  Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P (1993) A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13:698–705

    Article  PubMed  CAS  Google Scholar 

  • Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS (2007) Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci 69:95–102

    Article  PubMed  Google Scholar 

  • Wein F, Pietsch L, Saffrich R, Wuchter P, Walenda T, Bork S, Horn P, Diehlmann A, Eckstein V, Ho AD, Wagner W (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4:129–139

    Article  PubMed  CAS  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  PubMed  CAS  Google Scholar 

  • Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328:499–514

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the technical assistance of Jinhua Yu, Zilu Wang, Yangyu Zhen and Mifang Yang (Institute of Stomatology, School of Stomatology, Nanjing Medical University) with real-time PCR, Western blot and immunofluorescence.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laikui Liu or Hongbing Jiang.

Additional information

This work was supported by a National Natural Science Foundation of China grant (81070810) and a Foundation of Jiangsu Educational Committee grant (09KJB320003) and included a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Men, J., Fu, Y. et al. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Cell Tissue Res 350, 425–437 (2012). https://doi.org/10.1007/s00441-012-1487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1487-4

Keywords