Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy in immunity and inflammation

Abstract

Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy — the 'autophagy proteins' — orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of autophagy and its regulation.
Figure 2: Possible autophagy-protein-dependent pathways of pathogen degradation.
Figure 3: Functions of the autophagy pathway and/or proteins in immunity.
Figure 4: Autophagy/autophagy proteins act to achieve a balance between activation and inactivation of innate immune signalling.
Figure 5: The link between mutations in autophagy regulators and the chronic inflammatory disorder Crohn's disease.

Similar content being viewed by others

References

  1. Deretic, V. & Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nature Immunol. 10, 461–470 (2009).

    CAS  Google Scholar 

  3. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Saitoh, T. & Akira, S. Regulation of innate immune responses by autophagy-related proteins. J. Cell Biol. 189, 925–935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010). This paper provides a concise and critical review of current methods to monitor and modulate autophagy in mammalian cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    CAS  PubMed  Google Scholar 

  8. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  Google Scholar 

  10. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biol. 11, 1433–1437 (2009).

    CAS  PubMed  Google Scholar 

  11. Yla-Antilla, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    Google Scholar 

  12. Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  13. Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biol. 11, 385–396 (2009).

    CAS  PubMed  Google Scholar 

  15. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506–522 (2010).

    CAS  PubMed  Google Scholar 

  17. Ropolo, A. et al. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J. Biol. Chem. 282, 124–133 (2007).

    Google Scholar 

  18. Tian, Y. et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042–1055 (2010).

    CAS  PubMed  Google Scholar 

  19. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Webber, J. L. & Tooze, S. A. New insights into the function of Atg9. FEBS Lett. 584, 1319–1326 (2010).

    CAS  PubMed  Google Scholar 

  25. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biol. 12, 747–757 (2010).

    CAS  PubMed  Google Scholar 

  27. English, L. et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nature Immunol. 10, 480–487 (2009).

    CAS  Google Scholar 

  28. Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nature Cell Biol. 12, 836–841 (2010).

    CAS  PubMed  Google Scholar 

  29. Yamaguchi, H. et al. An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathogens 5, e1000670 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus . Science 306, 1037–1040 (2004). Reference 30, together with reference 99, provides the first evidence that autophagy has a key role in bacterial infection. Atg5 is shown to be essential for controlling the replication of group A Streptococci that escape into the cytoplasm.

    ADS  CAS  PubMed  Google Scholar 

  31. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    ADS  CAS  PubMed  Google Scholar 

  32. Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010). This study shows that the autophagy machinery is necessary for dendritic cells to process and present extracellular microbial antigens for MHC class II presentation in vivo , which protects mice against lethal viral infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger, S. B. et al. SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nature Immunol. 11, 920–927 (2010).

    CAS  Google Scholar 

  34. Huang, J. et al. Activation of antibacterial autophagy by NADPH oxidases. Proc. Natl Acad. Sci. USA 106, 6226–6231 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Khaminets, A. et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell. Microbiol. 12, 939–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Y. O., Khaminets, A., Hunn, J. P. & Howard, J. C. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathogens 5, 1–17 (2009).

    Google Scholar 

  38. Sumpter, R. Jr & Levine, B. Autophagy and innate immunity: triggering, targeting and tuning. Semin. Cell Dev. Biol. 21, 699–711 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Shahnazari, S. et al. A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8, 137–146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dupont, N. et al. Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6, 137–149 (2009).

    CAS  PubMed  Google Scholar 

  42. Ponpuak, M. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329–341 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guillemain, A. & Plus, N. Contrôle génique de la multiplication du virus de la sensibilité héréditaire au CO2 chez Drosophila melanogaster . Caryologia (suppl.) 1211–1213 (1954).

  44. Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nature Cell Biol. 12, 823–830 (2010).

    CAS  PubMed  Google Scholar 

  45. Liu, Y. et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577 (2005).

    CAS  PubMed  Google Scholar 

  46. Shelly, S., Lukinova, N., Bambina, S., Berman, A. & Cherry, S. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30, 588–598 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nature Immunol. 9, 908–916 (2008).

    CAS  Google Scholar 

  48. Jia, K. et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc. Natl Acad. Sci. USA 106, 14564–14569 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    ADS  CAS  PubMed  Google Scholar 

  50. Intemann, C. D. et al. Autophagy gene variant IRGM –261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathogens 5, e1000577 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. Kumar, D. et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis . Cell 140, 731–743 (2010).

    CAS  PubMed  Google Scholar 

  52. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  53. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunol. 11, 55–62 (2010).

    CAS  Google Scholar 

  54. Zhang, F. R. et al. Genomewide association study of leprosy. N. Engl. J. Med. 361, 2609–2618 (2009).

    CAS  PubMed  Google Scholar 

  55. Dreux, M. & Chisari, F. V. Viruses and the autophagy machinery. Cell Cycle 9, 1295–1307 (2010).

    CAS  PubMed  Google Scholar 

  56. Blanchet, F. P. et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    CAS  PubMed  Google Scholar 

  58. Leib, D. A., Alexander, D. E., Cox, D., Yin, J. & Ferguson, T. A. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T cell responses. J. Virol. 83, 12164–12171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. E. X. et al. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of γherpesvirus 68. PLoS Pathogens 5, e1000609 (2009).

    Google Scholar 

  60. Lee, J. S. et al. FLIP-mediated autophagy regulation in cell death control. Nature Cell Biol. 11, 1355–1362 (2009).

    CAS  PubMed  Google Scholar 

  61. Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biol. 11, 1233–1240 (2009).

    CAS  PubMed  Google Scholar 

  62. Moreau, K. et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell. Microbiol. 12, 1108–1123 (2010).

    CAS  PubMed  Google Scholar 

  63. Kyei, G. B. et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 186, 255–268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dreux, M., Gastaminza, P., Wieland, S. F. & Chisari, F. V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 14046–14051 (2009). This study shows that many autophagy proteins are essential for the initial stages of hepatitis C viral RNA translation, illustrating that autophagy proteins may be subverted to enhance the replication of intracellular pathogens.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sir, D. et al. The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication. Proc. Natl Acad. Sci. USA 107, 4383–4388 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  66. Reggiori, F. et al. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7, 500–508 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    ADS  CAS  PubMed  Google Scholar 

  68. Tang, D. et al. Endogenous HMGB1 regulates autophagy. J. Cell Biol. 190, 881–892 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuk, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6, 231–243 (2009).

    CAS  PubMed  Google Scholar 

  70. Low, D. H. et al. A novel human tectonin protein with multivalent β-propeller folds interacts with ficolin and binds bacterial LPS. PLoS ONE 4, e6260 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  71. Lipinski, M. M. et al. A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Dev. Cell 18, 1041–1052 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, F. et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood 116, 4806–4814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008). This study provided the first evidence that the autophagy machinery functions in MHC class II antigen presentation in vivo , specifically in shaping the CD4+ T-cell repertoire during negative thymic selection, and thereby preventing autoimmunity and multi-organ inflammation.

    ADS  CAS  PubMed  Google Scholar 

  74. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005). This study provided the first evidence that the autophagy machinery can deliver endogenously synthesized antigens for presentation on MHC class II molecules to CD4+ T cells.

    ADS  CAS  PubMed  Google Scholar 

  75. Munz, C. Antigen processing via autophagy—not only for MHC class II presentation anymore? Curr. Opin. Immunol. 22, 89–93 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    ADS  CAS  PubMed  Google Scholar 

  77. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jounai, N. et al. The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050–14055 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moscat, J. & Diaz-Meco, M. T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biol. 12, 213–223 (2010).

    CAS  PubMed  Google Scholar 

  81. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008). This study demonstrates that autophagy proteins negatively control endotoxin-induced inflammasome activation. References 81 and 82 also show that autophagy gene deficiency increases susceptibility to experimentally induced inflammatory bowel disease.

    ADS  CAS  PubMed  Google Scholar 

  83. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl Acad. Sci. USA 107, 13046–13050 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007). This paper shows that autophagy genes are necessary for apoptotic cells to generate engulfment signals required for successful apoptotic corpse clearance and the prevention of tissue inflammation.

    CAS  PubMed  Google Scholar 

  85. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genet. 40, 955–962 (2008).

    CAS  PubMed  Google Scholar 

  86. Brain, O., Allan, P. & Simmons, A. NOD2-mediated autophagy and Crohn disease. Autophagy 6, 412–414 (2010).

    PubMed  Google Scholar 

  87. Lapaquette, P., Glasser, A. L., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 12, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  88. Kuballa, P., Huett, A., Rioux, J. D., Daly, M. J. & Xavier, R. J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3, e3391 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  89. Fujita, N. et al. Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010). This study shows that both hypomorphic expression of an autophagy protein and a viral-infection trigger are necessary for experimentally induced inflammatory bowel disease, suggesting that the interaction between host defects in autophagy and environmental stressors such as infection may be crucial for the pathogenesis of certain inflammatory diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genet. 40, 204–210 (2008).

    CAS  PubMed  Google Scholar 

  92. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nature Genet. 41, 1228–1233 (2009).

    CAS  PubMed  Google Scholar 

  93. Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nature Genet. 41, 1234–1237 (2009).

    CAS  PubMed  Google Scholar 

  94. Nakamura, T. et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rodriguez, A. et al. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3, 211–222 (2006).

    CAS  PubMed  Google Scholar 

  97. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    ADS  CAS  PubMed  Google Scholar 

  98. Luciani, A. et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature Cell Biol. 12, 863–875 (2010).

    CAS  PubMed  Google Scholar 

  99. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004). Reference 99, together with reference 30, provides the first evidence that autophagy has a key role in bacterial infection. Autophagy induction by IFN-γ, rapamycin or starvation results in the conversion of mycobacterial phagosomes into phagolysosomes, thereby enhancing mycobacterial killing.

    CAS  PubMed  Google Scholar 

  100. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors' laboratories was supported by National Institutes of Health (NIH) grants RO1 CA109618 and U54 AI057156 (B.L.); by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by the Takeda Science Foundation (N.M.); and by NIH grants RO1 AI054483, U54 AI057160, RO1 AI084887 and RO1 CA096511 and the Broad Medical Foundation (H.W.V.). We thank T. Stappenbeck for discussions, and A. Diehl and M. Harstein for scientific illustration. We apologize to those authors whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, B., Mizushima, N. & Virgin, H. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011). https://doi.org/10.1038/nature09782

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09782

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing