Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.




Similar content being viewed by others
References
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
Barges S, Mihaly J, Galloni M, Hagstrom K, Müller M, Shanower G, Schedl P, Gyurkovics H, Karch F (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127(4):779–790
Bender W, Hudson A (2000) P element homing to the Drosophila bithorax complex. Development 127:3981–3992
Biggin MD, Tjian R (1988) Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53:699–711
Boivin A, Dura JM (1998) In vivo chromatin accessibility correlates with gene silencing in Drosophila. Genetics 150:1539–1549
Breiling A, O’Neill LP, D’Eliseo D, Turner BM, Orlando V (2004) Epigenome changes in active and inactive polycomb-group-controlled regions. EMBO Rep 5(10):976–982
Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA (1998) The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1:1057–1064
Brown JL, Fritsch C, Mueller J, Kassis JA (2003) The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130:285–294
Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S (2001) The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression. Development 128:2163–2173
Chiang A, O’Connor MB, Paro R, Simon J, Bender W (1995) Discrete Polycomb-binding sites in each parasegmental domain of the bithorax complex. Development 121:1681–1689
Déjardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D, Cavalli G (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434:533–538
Dellino GI, Tatout C, Pirrotta V (2002) Extensive conservation of sequences and chromatin structures in the bxd polycomb response element among Drosophilid species. Int J Dev Biol 46:133–141
Faucheux M, Roignant JY, Netter S, Charollais J, Antoniewski C, Theodore L (2003) batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol Cell Biol 23:1181–1195
Fitzgerald DP, Bender W (2001) Polycomb group repression reduces DNA accessibility. Mol Cell Biol 21:6585–6597
Fritsch C, Brown JL, Kassis JA, Muller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126:3905–3913
Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A, van der Lugt NM, Shashikant CS, Ruddle FH, Seto M, Korsmeyer SJ (1999) Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 96:14372–14377
Hodgson JW, Argiropoulos B, Brock HW (2001) Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol 21:4528–4543
Horard B, Tatout C, Poux S, Pirrotta V (2000) Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor. Mol Cell Biol 20:3187–3197
Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, Schedl P (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res 22:3138–3146
Kassis JA (2002) Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila. Adv Genet 46:421–438
Katsani KR, Hajibagheri MA, Verrijzer CP (1999) Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. Embo J 18:698–708
Lehmann M, Siegmund T, Lintermann KG, Korge G (1998) The pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain. J Biol Chem 273:28504–28509
Lu Q, Wallrath LL, Granok H, Elgin SC (1993) (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol 13:2802–2814
Mahmoudi T, Zuijderduijn LM, Mohd-Sarip A, Verrijzer CP (2003) GAGA facilitates binding of Pleiohomeotic to a chromatinized Polycomb response element. Nucleic Acids Res 31:4147–4156
Martin CH, Mayeda CA, Davis CA, Ericsson CL, Knafels JD, Mathog DR, Celniker SE, Lewis EB, Palazzolo MJ (1995) Complete sequence of the bithorax complex of Drosophila. Proc Natl Acad Sci USA 92:8398–8402
Mihaly J, Mishra RK, Karch F (1998) A conserved sequence motif in Polycomb-response elements. Mol Cell 1:1065–1066
Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, Hagstrom K, Schweinsberg SE, Schedl P (2001) The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol 21:1311–1318
Muller J, Bienz M (1991) Long range repression conferring boundaries of Ultrabithorax expression in the Drosophila embryo. Embo J 10:3147–3155
Muller J, Kassis JA (2006) Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 16:476–484
Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P (1999) The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 153:1333–1356
Nègre N, Hennetin J, Sun LV, Lavrov S, Bellis M, White KP, Cavalli G (2006) Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 4(6):e170
Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382
Pirrotta V (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93:333–336
Ringrose L, Paro R (2007) Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134:223–232
Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38(6):700–705
Shimell MJ, Peterson AJ, Burr J, Simon JA, O’Connor MB (2000) Functional analysis of repressor binding sites in the iab-2 regulatory region of the abdominal-A homeotic gene. Dev Biol 218(1):38–52
Simon J, Chiang A, Bender W, Shimell MJ, O’Connor M (1993) Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158:131–144
Sipos L, Kozma G, Molnar E, Bender W (2007) In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci USA 104:12416–12421
Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26:167–174
Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B, van Lohuizen M (2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38(6):694–699
Wilkins RC, Lis JT (1998) GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res 26:2672–2678
Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8:531–543
Acknowledgments
We thank Anna Rehák, Edina Ördög, Anikó Berente, Ildikó Krausz and Margit Pál for the technical help, József Mihály and Henrik Gyurkovics for discussions and critical reading of the manuscript. This work was supported by a grant from the National Institutes of Health (W.B.) and a Fogarty International Award (L.S. and W.B.). G.K. was supported by the Dr. Rollin D. Hotchkiss Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Hohmann.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kozma, G., Bender, W. & Sipos, L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 279, 595–603 (2008). https://doi.org/10.1007/s00438-008-0336-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00438-008-0336-3