Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

DNA replication origins: from sequence specificity to epigenetics

Abstract

Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specificity of initiation of DNA replication from bacteria to metazoans.
Figure 2: Main features of the β-globin and DHFR initiation regions of DNA replication.
Figure 3: From a single bacterial replicon to multiple metazoan replicons.

Similar content being viewed by others

References

  1. Jacob, F., Brenner, J. & Cuzin, F. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28, 329–348 (1963).

    CAS  Google Scholar 

  2. Kornberg, A. & Baker, T. A. DNA Replication (Freeman, W. H. and Co., New York, 1992).

    Google Scholar 

  3. Challberg, M. D. & Kelly, T. J. Animal virus DNA replication. Annu. Rev. Biochem. 58, 671–717 (1989).

    Article  CAS  Google Scholar 

  4. Dutta, A. & Bell, S. P. Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Dev. Biol. 13, 293–332 (1997).

    Article  CAS  Google Scholar 

  5. DePamphilis, M. L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21, 5–16 (1999).

    Article  CAS  Google Scholar 

  6. Berezney, R., Dubey, D. D. & Huberman, J. A. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108, 471–484 (2000).

    Article  CAS  Google Scholar 

  7. Newlon, C. S. & Theis, J. F. The structure and function of yeast ARS elements. Curr. Opin. Genet. Dev. 3, 752–758 (1993).

    Article  CAS  Google Scholar 

  8. Kelly, T. J. & Brown, G. M. Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880 (2000).

    Article  CAS  Google Scholar 

  9. Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771 (1980).

    Article  CAS  Google Scholar 

  10. Méchali, M. & Kearsey, S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38, 55–64 (1984).

    Article  Google Scholar 

  11. Wolffe, A. P. Chromatin: Structure and Function (Academic Press, San Diego, California, 1998).

    Google Scholar 

  12. Linskens, M. & Huberman, J. A. Organization of replication in ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 4927–4935 (1988).

    Article  CAS  Google Scholar 

  13. Friedman, K. L., Brewer, B. J. & Fangman, W. L. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 667–678 (1997).

    Article  CAS  Google Scholar 

  14. Theis, J. F. & Newlon, C. S. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol. Cell. Biol. 21, 2790–2801 (2001).

    Article  CAS  Google Scholar 

  15. Bell, S. P. & Stillman, B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134 (1992).

    Article  CAS  Google Scholar 

  16. Abdurashidova, G. et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science 287, 2023–2026 (2000).

    Article  CAS  Google Scholar 

  17. Todorovic, V., Falaschi, A. & Giacca, M. Replication origins of mammalian chromosomes: the happy few. Front. Biosci. 4, D859–D868 (1999).

    Article  CAS  Google Scholar 

  18. Tjian, R. & Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  19. Aladjem, M. I., Rodewald, L. W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science 281, 1005–1009 (1998).

    Article  CAS  Google Scholar 

  20. Altman, A. L. & Fanning, E. The Chinese hamster dihydrofolate reductase replication origin β is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Mol. Cell. Biol. 21, 1098–1110 (2001).

    Article  CAS  Google Scholar 

  21. Kitsberg, D., Selig, S., Keshet, I. & Cedar, H. Replication structure of the human β-globin gene domain. Nature 366, 588–590 (1993).

    Article  CAS  Google Scholar 

  22. Malott, M. & Leffak, M. Activity of the c-myc replicator at an ectopic chromosomal location. Mol. Cell. Biol. 19, 5685–5695 (1999).

    Article  CAS  Google Scholar 

  23. Brewer, B. J. & Fangman, W. L. Initiation preference at a yeast origin of replication. Proc. Natl Acad. Sci. USA 91, 3418–3422 (1994).

    Article  CAS  Google Scholar 

  24. Gomez, M. & Antequera, F. Organization of DNA replication origins in the fission yeast genome. EMBO J. 18, 5683–5690 (1999).

    Article  CAS  Google Scholar 

  25. Haber, J. E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article  CAS  Google Scholar 

  26. Foss, M., McNally, F. J., Laurenson, P. & Rine, J. Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science 262, 1838–1844 (1993).

    Article  CAS  Google Scholar 

  27. Micklem, G., Rowley, A., Harwood, J., Nasmyth, K. & Diffley, J. F. Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature 366, 87–89 (1993).

    Article  CAS  Google Scholar 

  28. Bell, S. P., Kobayashi, R. & Stillman, B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262, 1844–1849 (1993).

    Article  CAS  Google Scholar 

  29. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 (1996).

    Article  CAS  Google Scholar 

  30. Bell, S. P., Mitchell, J., Leber, J., Kobayashi, R. & Stillman, B. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83, 563–568 (1995).

    Article  CAS  Google Scholar 

  31. Fox, C. A., Ehrenhofer-Murray, A. E., Loo, S. & Rine, J. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276, 1547–1551 (1997).

    Article  CAS  Google Scholar 

  32. Gavin, K. A., Hidaka, M. & Stillman, B. Conserved initiator proteins in eukaryotes. Science 270, 1667–1671 (1995).

    Article  CAS  Google Scholar 

  33. Ehrenhofer-Murray, A. E., Gossen, M., Pak, D. T., Botchan, M. R. & Rine, J. Separation of origin recognition complex functions by cross-species complementation. Science 270, 1671–1674 (1995).

    Article  CAS  Google Scholar 

  34. Pak, D. T. et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91, 311–323 (1997).

    Article  CAS  Google Scholar 

  35. Huang, D. W. et al. Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J. Cell Biol. 142, 307–318 (1998).

    Article  CAS  Google Scholar 

  36. Chuang, R. Y. & Kelly, T. J. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc. Natl Acad. Sci. USA 96, 2656–2661 (1999).

    Article  CAS  Google Scholar 

  37. Iizuka, M. & Stillman, B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 274, 23027–23034 (1999).

    Article  CAS  Google Scholar 

  38. Ermakova, O. V. et al. Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol. Cell 3, 321–330 (1999).

    Article  CAS  Google Scholar 

  39. Dijkwel, P. A. & Hamlin, J. L. The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol. Cell. Biol. 15, 3023–3031 (1995).

    Article  CAS  Google Scholar 

  40. Kobayashi, T., Rein, T. & DePamphilis, M. L. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Mol. Cell. Biol. 18, 3266–3277 (1998).

    Article  CAS  Google Scholar 

  41. Kalejta, R. F. et al. Distal sequences, but not ori-beta/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2, 797–806 (1998).

    Article  CAS  Google Scholar 

  42. Thoma, F., Bergman, L. W. & Simpson, R. T. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J. Mol. Biol. 177, 715–733 (1984).

    Article  CAS  Google Scholar 

  43. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    Article  CAS  Google Scholar 

  44. Minc, E., Courvalin, J. C. & Buendia, B. HP1γ associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet. Cell Genet. 90, 279–284 (2000).

    Article  CAS  Google Scholar 

  45. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).

    Article  CAS  Google Scholar 

  46. Pirrotta, V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93, 333–336 (1998).

    Article  CAS  Google Scholar 

  47. Cavalli, G. & Paro, R. Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr. Opin. Cell Biol. 10, 354–360 (1998).

    Article  CAS  Google Scholar 

  48. Nicolas, R. H. & Goodwin, G. H. Molecular cloning of polybromo, a nuclear protein containing multiple domains including five bromodomains, a truncated HMG-box, and two repeats of a novel domain. Gene 175, 233–240 (1996).

    Article  CAS  Google Scholar 

  49. Callebaut, I., Courvalin, J. C. & Mornon, J. P. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 446, 189–193 (1999).

    Article  CAS  Google Scholar 

  50. Henderson, D. S., Banga, S. S., Grigliatti, T. A. & Boyd, J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 13, 1450–1459 (1994).

    Article  CAS  Google Scholar 

  51. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    Article  CAS  Google Scholar 

  52. Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225 (2000).

    Article  CAS  Google Scholar 

  53. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  Google Scholar 

  54. Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819–2830 (1996).

    Article  CAS  Google Scholar 

  55. Lu, L., & Tower, J. A transcriptional insulator element, the su(Hw) binding site, protects a chromosomal DNA replication origin from position effects. Mol. Cell Biol. 17, 2202–2206 (1997).

    Article  CAS  Google Scholar 

  56. Wang, S., Dijkwel, P. A. & Hamlin, J. L. Lagging-strand, early-labelling, and two-dimensional gel assays suggest multiple potential initiation sites in the Chinese hamster dihydrofolate reductase origin. Mol. Cell. Biol. 18, 39–50 (1998).

    Article  Google Scholar 

  57. Van der Vliet, P. C. in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M. C.) (Cold Spring Harbor Laboratory Press, New York, 1996).

    Google Scholar 

  58. Cheng, L. & Kelly, T. J. Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59, 541–551 (1989).

    Article  CAS  Google Scholar 

  59. Wei, X. et al. Segregation of transcription and replication sites into higher order domains. Science 281, 1502–1506 (1998).

    Article  CAS  Google Scholar 

  60. Brewer, B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686 (1988).

    Article  CAS  Google Scholar 

  61. Snyder, M., Sapolsky, R. J. & Davis, R. W. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 2184–2194 (1988).

    Article  CAS  Google Scholar 

  62. Haase, S. B., Heinzel, S. S. & Calos, M. P. Transcription inhibits the replication of autonomously replicating plasmids in human cells. Mol. Cell. Biol. 14, 2516–2524 (1994).

    Article  CAS  Google Scholar 

  63. Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030–1033 (1996).

    Article  CAS  Google Scholar 

  64. Muller, M., Lucchini, R. & Sogo, J. M. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell 5, 767–777 (2000).

    Article  CAS  Google Scholar 

  65. Callan, H. G. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B 181, 19–41 (1972).

    Article  CAS  Google Scholar 

  66. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).

    Article  CAS  Google Scholar 

  67. Hyrien, O. & Méchali, M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12, 4511–4520 (1993).

    Article  CAS  Google Scholar 

  68. Hyrien, O., Maric, C. & Méchali, M. Transition in specification of embryonic metazoan DNA replication origins. Science 270, 994–997 (1995).

    Article  CAS  Google Scholar 

  69. Sasaki, T., Sawado, T., Yamaguchi, M. & Shinomiya, T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol. Cell. Biol. 19, 547–555 (1999).

    Article  CAS  Google Scholar 

  70. Vassetzky, Y., Hair, A. & Méchali, M. Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 14, 1541–1552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gurdon, J. B. Genetic reprogramming following nuclear transplantation in amphibia. Semin. Cell Dev. Biol. 10, 239–243 (1999).

    Article  CAS  Google Scholar 

  72. Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  Google Scholar 

  73. Aladjem, M. I. et al. Participation of the human β-globin locus control region in initiation of DNA replication. Science 270, 815–819 (1995).

    Article  CAS  Google Scholar 

  74. Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell. Biol. 20, 5581–5591 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank D. Fisher, D. Maiorano and P. Françon for helpful comments on this manuscript. Work in our laboratory is mainly supported by the CNRS, ARC and FRM.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

β-globin

DHFR

Myc

HML

HMR

orc1

orc2

orc5

Sir1

Gal4

Sir3

HP1

Orc2

Orc4

IgH

ARS1

BAH

PCNA

CAF1

Glossary

(A+T)-HOOK MOTIF

A nine-amino-acid protein domain that binds to the minor groove of (A+T)-rich DNA.

BOUNDARY ELEMENT

A DNA element that lies between two gene-controlling elements, such as a promoter and enhancer, preventing their communication or interaction. The function of boundary elements is usually mediated by the binding of specific factors.

BROMO-ADJACENT-HOMOLOGY DOMAIN

A domain of unknown function that is found in several proteins that are involved in chromatin remodelling and epigenetic mechanisms.

CHROMODOMAIN

A protein motif that is involved in binding certain methylated histones; often associated with transcriptional repression.

HETEROCHROMATIN

The densely staining regions of the nucleus that generally contain condensed, transcriptionally inactive regions of the genome.

HIGH MOBILITY GROUP PROTEINS

Non-histone proteins involved in chromatin structure and gene regulation.

INSULATOR ELEMENT

A chromatin element that acts as a barrier against the influence of positive (enhancers) or negative (silencers) signals.

ORIGIN RECOGNITION COMPLEX

A complex of six subunits that binds to the origins of DNA replication in an ATP-dependent manner.

POLYCOMB-GROUP PROTEINS

Genes that are involved in the heritable repression of developmentally regulated genes, such as the homeotic genes.

POSITION-EFFECT VARIEGATION

A phenomenon discovered in Drosophila, which occurs when genes placed close to large heterochromatic regions are repressed. This repression is metastable, in that the silenced state can be occasionally released, giving rise to derepressed cells and a variegated phenotype.

REPLICON

A genetic element that contains a single origin of DNA replication, recognized by a specific positive regulatory protein or complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méchali, M. DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2, 640–645 (2001). https://doi.org/10.1038/35084598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084598

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing