Skip to main content
Log in

Improved relativistic energy-consistent pseudopotentials for 3d-transition metals

  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Energy-consistent relativistic pseudopotentials for 3d-transition metals Sc to Ni based on modified valence energies are proposed. The pseudopotentials are adjusted at the finite difference level within the intermediate coupling scheme with respect to multi-configuration Dirac–Hartree–Fock data based on the Dirac–Coulomb Hamiltonian with an estimate of the Breit contributions in quasidegenerate perturbation theory. Typically a few hundred to thousand J levels arising from about 35 to 40 configurations ranging from the anion down to the highly charged cation are considered as references. It is shown that introducing a small common energetic shift of all valence energies reduces the errors in the parameter adjustment considerably. Results of highly correlated atomic and molecular test calculations using large basis sets and basis set extrapolation techniques are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hellmann H (1935) J Chem Phys 3:61

    Google Scholar 

  2. Gombás P (1935) Z Phys 94:473

  3. Weeks JD, Hazi A, Rice SA (1969) Adv Quant Chem 16:283

    Google Scholar 

  4. Dixon RN, Robertson IL (1978) Spec Period Rep Theor Chem (The Chemical Society, London) 3:100

  5. Pitzer KS (1984) Int J Quant Chem 25:131

    Google Scholar 

  6. Kahn LR (1984) Int J Quant Chem 25:149

    Google Scholar 

  7. Krauss M, Stevens WJ (1984) Ann Rev Phys Chem 35:357

    Google Scholar 

  8. Christiansen PA, Ermler WC, Pitzer KS (1985) Ann Rev Phys Chem 36:407

    Google Scholar 

  9. Ermler WC, Ross RB, Christiansen PA (1988) Adv Quant Chem 19:139

  10. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Rev Comp Chem 8:63

    Google Scholar 

  11. Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) Rev Comp Chem 8:145

    Google Scholar 

  12. Pyykkö P, Stoll H (2000) RSC Spec Period Rep, Chemical modelling, applications and theory, vol 1, p 239

  13. Seijo L, Barandiarán Z (1999) In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 4. World Scientific, Singapore, p 55

  14. Dolg M (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, NIC Series, vol 1. John Neumann Institute for Computing, Jülich, p 479, vol. 3, p 507

  15. Stoll H, Metz B, Dolg M (2002) J Comput Chem 23:767

    Google Scholar 

  16. Heß BA, Dolg M (2002) In: Hess BA (ed) Relativistic effects in heavy-element chemistry and physics. Wiley, Chichester, p 89

  17. Dolg M (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part 1, Fundamentals. Elsevier, Amsterdam, p 793

  18. Schwerdtfeger P (2003) In: Kaldor U, Wilson S (eds) Progress in theoretical chemistry and physics: Theoretical chemistry and physics of heavy and superheavy elements. Kluwer, Dordrecht, p 399

  19. Pyykkö P (1978) Adv Quant Chem 11:353

    Google Scholar 

  20. Pitzer KS (1979) Acc Chem Res 12:271

    Google Scholar 

  21. Pyykkö P, Desclaux JP (1979) Acc Chem Res 12:276

    Google Scholar 

  22. Schwarz WHE (1987) Phys Scr 36:403

  23. Kutzelnigg W (1987) Phys Scr 36:416

  24. Pyykkö P (1988) Chem Rev 88:563

  25. Schwarz WHE (1990) In Maksić ZB (ed) Theoretical models of chemical bonding, vol 2, The concept of the chemical bond. Springer, Berlin Heidelberg Newyork, p 593

  26. Heß BA, Marian CM, Peyerimhoff S (1995) In: Yarkony DR (ed) Advanced series in physical chemistry: modern electronic structure theory, vol 2. World Scientific, Singapore, p 152

  27. Almlöf J, Gropen O (1996) In: Lipkowitz KB, Boyd BD (eds) Reviews in computational chemistry vol 8. VCH Publishers, New York, p 203

  28. Dolg M, Stoll H (1996) In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 22. Elsevier, Amsterdam, p 607

  29. Heß BA (1997) Ber Bunsenges 101:1

  30. Heß BA (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) The encyclopedia of computational chemistry. Wiley, Chichester, p 2499

  31. Dolg M, Wedig U, Stoll H, Preuß H (1987) J Chem Phys 86:866

    Google Scholar 

  32. Dolg M, Stoll H, Preuß H (1989) J Chem Phys 90:1730

    Google Scholar 

  33. Dolg M, Stoll H, Savin A, Preuß H (1989) Theor Chim Acta 75:173

    Google Scholar 

  34. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123

    Google Scholar 

  35. Dolg M, Stoll H, Preuß H, Pitzer RM, J Phys Chem (1993) 97:5852

    Google Scholar 

  36. Metz B, Schweizer M, Stoll H, Dolg M, Liu w (2000) Theor Chem Acc 104:22

  37. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563

    Google Scholar 

  38. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Phys Chem 119:11113

    Google Scholar 

  39. Dolg M, Stoll H, Seth M, Schwerdtfeger P (2001) Chem Phys Lett 345:490

    Google Scholar 

  40. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227

  41. Sheu J-L, Lee S-L, Dolg M (2003) J Chin Chem Soc 50:583

    Google Scholar 

  42. Wedig U, Dolg M, Stoll H (1986) In: Veillard A (ed) Quantum Chemistry: The challenge of transition metals and coordination chemistry, NATO ASI Series, Series C, Mathematical and physical sciencies, vol 176. Reidel, Dordrecht, p 79

  43. Fuentealba P, Preuss H, Stoll H, v Szentpály L (1982) Chem Phys Lett 89:418

    Google Scholar 

  44. v Szentpály L, Fuentealba P, Preuss H, Stoll H (1982) Chem Phys Lett 93:555

    Google Scholar 

  45. Müller W, Flesch J, Meyer W (1984) J Chem Phys 80:3297

    Google Scholar 

  46. Müller W, Meyer W (1984) J Chem Phys 80:3311

    Google Scholar 

  47. Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1

    Google Scholar 

  48. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219; Erratum (2000) J Chem Phys 112:3106

  49. Deegan MJO, Knowles PJ (1994) 227:3106

  50. Cao X, Dolg M (2001) J Chem Phys 115:7348

    Google Scholar 

  51. Cao X, Dolg M (2001) Chem Phys Lett 349:489

    Google Scholar 

  52. Cao X, Dolg M, Stoll H (2003) J Chem Phys 118:487

    Google Scholar 

  53. Cao X, Dolg M (2003) Mol Phys 101:961

  54. Boys SF, Bernardi F (1970) Mol Phys 19:553

  55. atomic structure code GRASP; Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Comput Phys Commun 55:425 (extension for pseudopotentials by Dolg M)

    Google Scholar 

  56. Murtagh BA, Sargent RWH (1970) Comput J 13:185

  57. Kolb D, Johnson WR (1982) Phys Rev A 26:19

    Google Scholar 

  58. MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Schütz M, Lindh R, Celani P, Korona T, Rauhut G, Manby FR, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer RM, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, (a) Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053; (b) Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259; (c) Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803; (d) Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514; (e) Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175

  59. Moore CE (1949,1952,1958) Atomic energy levels vols 1–3. Natl Bur Stand Circ 467, US GPO, Washington DC

  60. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, vol IV, Constants of diatomic molecules, Van Nostrand, New York

  61. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:2123

    Google Scholar 

  62. Bauschlicher CW, Maitre P (1995) Theor Chim Acta 90:189

    Google Scholar 

  63. Kamariotis A, Hayes T, Bellert D, Brucat PJ (2000) Chem Phys Lett 316:60

    Google Scholar 

  64. Szalay PG, Bartlett RJ (1993) Chem Phys Lett 214:481

    Google Scholar 

  65. Engelking PC, Lineberger WC (1977) J Phys. Chem 66:5054

    Google Scholar 

  66. Fan J, Wang LS (1995) J Chem Phys 102:8714

    Google Scholar 

  67. Cheung A, Lee N, Lyyra M, Merer AJ, Taylor AW (1982) J Mol Spectr 95:213

    Google Scholar 

  68. Drechsler G, Boesl U, Bäßmann C, Schlag EW (1997) J Chem Phys 107:2284

    Google Scholar 

  69. Rostai M, Wahlbeck PG (1999) J Chem Thermodyn 31:255

    Google Scholar 

  70. Jeung GH, Luc P, Vetter R, Kim KH, Lee YS (2002) Phys Chem Chem Phys 4:596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dolg.

Additional information

To be submitted to Theoretical Chemistry Accounts (special volume on the occasion of Prof. Dr. H. Stoll's 60th birthday)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolg, M. Improved relativistic energy-consistent pseudopotentials for 3d-transition metals. Theor Chem Acc 114, 297–304 (2005). https://doi.org/10.1007/s00214-005-0679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0679-3

Keywords