Abstract
Energy-consistent relativistic pseudopotentials for 3d-transition metals Sc to Ni based on modified valence energies are proposed. The pseudopotentials are adjusted at the finite difference level within the intermediate coupling scheme with respect to multi-configuration Dirac–Hartree–Fock data based on the Dirac–Coulomb Hamiltonian with an estimate of the Breit contributions in quasidegenerate perturbation theory. Typically a few hundred to thousand J levels arising from about 35 to 40 configurations ranging from the anion down to the highly charged cation are considered as references. It is shown that introducing a small common energetic shift of all valence energies reduces the errors in the parameter adjustment considerably. Results of highly correlated atomic and molecular test calculations using large basis sets and basis set extrapolation techniques are presented.
Similar content being viewed by others
References
Hellmann H (1935) J Chem Phys 3:61
Gombás P (1935) Z Phys 94:473
Weeks JD, Hazi A, Rice SA (1969) Adv Quant Chem 16:283
Dixon RN, Robertson IL (1978) Spec Period Rep Theor Chem (The Chemical Society, London) 3:100
Pitzer KS (1984) Int J Quant Chem 25:131
Kahn LR (1984) Int J Quant Chem 25:149
Krauss M, Stevens WJ (1984) Ann Rev Phys Chem 35:357
Christiansen PA, Ermler WC, Pitzer KS (1985) Ann Rev Phys Chem 36:407
Ermler WC, Ross RB, Christiansen PA (1988) Adv Quant Chem 19:139
Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Rev Comp Chem 8:63
Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) Rev Comp Chem 8:145
Pyykkö P, Stoll H (2000) RSC Spec Period Rep, Chemical modelling, applications and theory, vol 1, p 239
Seijo L, Barandiarán Z (1999) In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 4. World Scientific, Singapore, p 55
Dolg M (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, NIC Series, vol 1. John Neumann Institute for Computing, Jülich, p 479, vol. 3, p 507
Stoll H, Metz B, Dolg M (2002) J Comput Chem 23:767
Heß BA, Dolg M (2002) In: Hess BA (ed) Relativistic effects in heavy-element chemistry and physics. Wiley, Chichester, p 89
Dolg M (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part 1, Fundamentals. Elsevier, Amsterdam, p 793
Schwerdtfeger P (2003) In: Kaldor U, Wilson S (eds) Progress in theoretical chemistry and physics: Theoretical chemistry and physics of heavy and superheavy elements. Kluwer, Dordrecht, p 399
Pyykkö P (1978) Adv Quant Chem 11:353
Pitzer KS (1979) Acc Chem Res 12:271
Pyykkö P, Desclaux JP (1979) Acc Chem Res 12:276
Schwarz WHE (1987) Phys Scr 36:403
Kutzelnigg W (1987) Phys Scr 36:416
Pyykkö P (1988) Chem Rev 88:563
Schwarz WHE (1990) In Maksić ZB (ed) Theoretical models of chemical bonding, vol 2, The concept of the chemical bond. Springer, Berlin Heidelberg Newyork, p 593
Heß BA, Marian CM, Peyerimhoff S (1995) In: Yarkony DR (ed) Advanced series in physical chemistry: modern electronic structure theory, vol 2. World Scientific, Singapore, p 152
Almlöf J, Gropen O (1996) In: Lipkowitz KB, Boyd BD (eds) Reviews in computational chemistry vol 8. VCH Publishers, New York, p 203
Dolg M, Stoll H (1996) In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 22. Elsevier, Amsterdam, p 607
Heß BA (1997) Ber Bunsenges 101:1
Heß BA (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) The encyclopedia of computational chemistry. Wiley, Chichester, p 2499
Dolg M, Wedig U, Stoll H, Preuß H (1987) J Chem Phys 86:866
Dolg M, Stoll H, Preuß H (1989) J Chem Phys 90:1730
Dolg M, Stoll H, Savin A, Preuß H (1989) Theor Chim Acta 75:173
Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123
Dolg M, Stoll H, Preuß H, Pitzer RM, J Phys Chem (1993) 97:5852
Metz B, Schweizer M, Stoll H, Dolg M, Liu w (2000) Theor Chem Acc 104:22
Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563
Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Phys Chem 119:11113
Dolg M, Stoll H, Seth M, Schwerdtfeger P (2001) Chem Phys Lett 345:490
Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227
Sheu J-L, Lee S-L, Dolg M (2003) J Chin Chem Soc 50:583
Wedig U, Dolg M, Stoll H (1986) In: Veillard A (ed) Quantum Chemistry: The challenge of transition metals and coordination chemistry, NATO ASI Series, Series C, Mathematical and physical sciencies, vol 176. Reidel, Dordrecht, p 79
Fuentealba P, Preuss H, Stoll H, v Szentpály L (1982) Chem Phys Lett 89:418
v Szentpály L, Fuentealba P, Preuss H, Stoll H (1982) Chem Phys Lett 93:555
Müller W, Flesch J, Meyer W (1984) J Chem Phys 80:3297
Müller W, Meyer W (1984) J Chem Phys 80:3311
Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1
Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219; Erratum (2000) J Chem Phys 112:3106
Deegan MJO, Knowles PJ (1994) 227:3106
Cao X, Dolg M (2001) J Chem Phys 115:7348
Cao X, Dolg M (2001) Chem Phys Lett 349:489
Cao X, Dolg M, Stoll H (2003) J Chem Phys 118:487
Cao X, Dolg M (2003) Mol Phys 101:961
Boys SF, Bernardi F (1970) Mol Phys 19:553
atomic structure code GRASP; Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Comput Phys Commun 55:425 (extension for pseudopotentials by Dolg M)
Murtagh BA, Sargent RWH (1970) Comput J 13:185
Kolb D, Johnson WR (1982) Phys Rev A 26:19
MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Schütz M, Lindh R, Celani P, Korona T, Rauhut G, Manby FR, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer RM, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, (a) Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053; (b) Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259; (c) Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803; (d) Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514; (e) Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175
Moore CE (1949,1952,1958) Atomic energy levels vols 1–3. Natl Bur Stand Circ 467, US GPO, Washington DC
Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, vol IV, Constants of diatomic molecules, Van Nostrand, New York
Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:2123
Bauschlicher CW, Maitre P (1995) Theor Chim Acta 90:189
Kamariotis A, Hayes T, Bellert D, Brucat PJ (2000) Chem Phys Lett 316:60
Szalay PG, Bartlett RJ (1993) Chem Phys Lett 214:481
Engelking PC, Lineberger WC (1977) J Phys. Chem 66:5054
Fan J, Wang LS (1995) J Chem Phys 102:8714
Cheung A, Lee N, Lyyra M, Merer AJ, Taylor AW (1982) J Mol Spectr 95:213
Drechsler G, Boesl U, Bäßmann C, Schlag EW (1997) J Chem Phys 107:2284
Rostai M, Wahlbeck PG (1999) J Chem Thermodyn 31:255
Jeung GH, Luc P, Vetter R, Kim KH, Lee YS (2002) Phys Chem Chem Phys 4:596
Author information
Authors and Affiliations
Corresponding author
Additional information
To be submitted to Theoretical Chemistry Accounts (special volume on the occasion of Prof. Dr. H. Stoll's 60th birthday)
Rights and permissions
About this article
Cite this article
Dolg, M. Improved relativistic energy-consistent pseudopotentials for 3d-transition metals. Theor Chem Acc 114, 297–304 (2005). https://doi.org/10.1007/s00214-005-0679-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00214-005-0679-3