Loading [MathJax]/extensions/TeX/ietmacros.js
Multicategory Classification Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis | IEEE Journals & Magazine | IEEE Xplore

Multicategory Classification Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis


Abstract:

In this paper, the recently developed Extreme Learning Machine (ELM) is used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids ...Show More

Abstract:

In this paper, the recently developed Extreme Learning Machine (ELM) is used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima, improper learning rate and overfitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory classification performance of ELM on three benchmark microarray data sets for cancer diagnosis, namely, the GCM data set, the Lung data set, and the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine methods like SVM-OVO and Ramaswamy's SVM-OVA. ELM also achieves better accuracies for classification of individual categories.
Page(s): 485 - 495
Date of Publication: 13 August 2007

ISSN Information:

PubMed ID: 17666768

Contact IEEE to Subscribe

References

References is not available for this document.