Formation Mechanism of the Slice and Rod-Like Cerium Dioxide Precursor Particles

Article Preview

Abstract:

Ultra-fine cerium dioxide precursor particles was prepared with cerium (III) nitrate hexahydrate (Ce (NO3)36H2O) and urea (CO(NH2)2) at 85°C by homogenous precipitation method. Effects of reaction and ageing time on the morphology of the precursor particles were studied, the morphology of precursor particles was characterized by scan electronic microscope and the crystallinity of the precursors was studied by X-ray diffraction. The result showed that the mono-dispersed spherical particles turned into flower and bundle-like particles as reaction time increasing, the particles turned into slice and rod-like particles as the ageing time increasing, the transition process occurred in ageing process was later than that in the reaction process, the spherical particles were less crystallization and the slice and the rod-like particles were at a state of fine crystallization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 743-744)

Pages:

389-396

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

[1] E. Matigevic, W. P. Hsu Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III) J. Colloid Interf. Sci. 118.

Google Scholar

[2] (1987) 506-523.

Google Scholar

[2] Z.H. Han, N. Guo, K.B. Tang, S.H. Yu, H.Q. Zhao, Y.T. Qian Hydrothermal crystal growth and characterization of cerium hydroxycarbonates J. Cryst. Growth. 219.

DOI: 10.1016/s0022-0248(00)00611-4

Google Scholar

[3] (2000) 315-318.

Google Scholar

[3] Z.H. Han, Y.T. Qian, H.B. Tang, G.Q. Lu, S.H. Yu, N. Guo Hydrothermal deposition of cerium hydroxycarbonate thin films on glass Inorg. Chem. Commun. 6 (2003) 1117-1121.

DOI: 10.1016/s1387-7003(03)00194-1

Google Scholar

[4] Z.H. Han, P. Xu, K.R. Ratinac, G.Q. Lu Hydroxide carbonates and oxide carbonate hydrate of rare earths grown on glass via a hydrothermal route J. Cryst. Growth . 273 (2004) 248-257.

DOI: 10.1016/j.jcrysgro.2004.08.014

Google Scholar

[5] Q. Li, Z.H. Han, M.W. Shao, X.M. Liu, Y.T. Qian Preparation of cerium hydroxycarbonate by a surfactant-assisted route J. Phys. Chem. Solids. 64 (2003) 295-297.

DOI: 10.1016/s0022-3697(02)00299-8

Google Scholar

[6] B. Bakiz, F. Guinneton, J.P. Dallas, S. Villain, J.R. Gavarri From cerium oxycarbonate to nanostructured ceria: Relations between synthesis, thermal process and morphologies J. Cryst. Growth. 310 (2008) 3055-061.

DOI: 10.1016/j.jcrysgro.2008.03.010

Google Scholar

[7] M.Z. Wu, Q.H. Zhang, Y.M. Liu, Q.Q. Fang, Z.S. Liu From cerium oxycarbonate to nanostructured ceria: Relations between synthesis, thermal process and morphologies Mater. Res. Bull. 44 (2009) 1437-1440.

Google Scholar

[8] S.F. Chen, S.H. Yu, B. Yu, L. Ren, W.T. Yao, H. Colfen Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route Chem. Eur. J. 10 (2004) 3050-3058.

DOI: 10.1002/chem.200306066

Google Scholar

[9] D.E. Zhang, X.J. Zhang, Z.M. Ni, J.M. Song, H.G. Zheng Fabrication of novel threefold shape CeO2 dendrites: Optical and electrochemical properties Chem. Phys. Lett. 430 (2006) 326-329.

DOI: 10.1016/j.cplett.2006.08.121

Google Scholar

[10] D.E. Zhang, Z.W. Tong, S.Z. Li, X.B. Zhang, A.L. Ying A Novel Route Toward Fabrication of Twofold-Shaped CeO2 Dendrites Eur. J. Inorg. Chem. (2008) 5476-5481.

DOI: 10.1002/ejic.200800555

Google Scholar

[11] D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zhang Optical and Electrochemical Properties of CeO2 Spindles Chem Phys Chem. 7 (2006) 2468-2470.

DOI: 10.1002/cphc.200600388

Google Scholar

[12] D.L. Zhao, Q. Yang, Z.H. Han, J. Zhou, S.B. Xu, F.Y. Sun Biomolecule-assisted synthesis of rare earth hydroxycarbonates Solid State Sci. 10.

DOI: 10.1016/j.solidstatesciences.2007.08.006

Google Scholar

[1] (2008) 31-39.

Google Scholar

[13] Z.Y. Guo, F.L. Du, G.C. Li, Z.L. Cui Synthesis of Single-crystalline CeCO3OH with Shuttle Morphology and Their Thermal Conversion to CeO2 Cryst. Growth Des. 8.

Google Scholar

[8] (2008) 2674-2677.

Google Scholar

[14] Z.Y. Guo, F.L. Du, G.C. Li, Z.L. Cui Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2 Mater. Chem. Phys. 113 (2009) 53-56.

DOI: 10.1016/j.matchemphys.2008.07.029

Google Scholar

[15] Z.Y. Guo, F.L. Du, Z.L. Cui Synthesis and characterization of bundle-like structures consisting of single crystal Ce(OH)CO3 nanorods Mater. Lett. 61 (2007) 694-696.

DOI: 10.1016/j.matlet.2006.05.044

Google Scholar

[16] D.S. Zhang, L. Huang, J.P. Zhang, L.Y. Shi Facile synthesis of ceria rhombic microplates J Mater Sci 43 (2008) 5647-5650.

DOI: 10.1007/s10853-008-2876-7

Google Scholar

[17] C.S. Riccardi, R.C. Lima, M.L. dos Santos, Bueno R.R., J.A. Varela, E. Longo Preparation of CeO2 by a simple microwave–hydrothermal method Solid State Ionics, 180[2-3] (2009) 288-291.

DOI: 10.1016/j.ssi.2008.11.016

Google Scholar

[18] S.F. Wang, F. Gu, C.Z. Li, H.M. Cao Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures J. Cryst. Growth. 307 (2007) 386-394.

DOI: 10.1016/j.jcrysgro.2007.06.025

Google Scholar

[19] C.H. Lu, H.C. Wang Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process Mater. Sci. Eng. B90 (2002) 138-141.

DOI: 10.1016/s0921-5107(01)00924-2

Google Scholar

[20] H.C. Wang, C.H. Lu Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique Mater. Res. Bull. 37 (2002) 783-792.

DOI: 10.1016/s0025-5408(01)00766-8

Google Scholar

[21] N. Ta, M.L. Zhang, J. Li, H.J. Li, Y. Li, W.J. Shen Facile Synthesis of CeO2 Nanospheres Chinese J. Catal. 29.

Google Scholar

[11] (2008) 1070-1072.

Google Scholar

[22] M. Oikawa, S. Fujihara Crystal growth of Ce2O(CO3)2·H2O in aqueous solutions: Film formation and samarium doping J. Solid State Chem. 178 (2005) 2036-(2041).

DOI: 10.1016/j.jssc.2005.04.017

Google Scholar

[23] Y. Ikuma, H. Oosawa, E. Shimada, M. Kamiya Effect of microwave radiation on the formation of Ce2O(CO3)2·H2O in aqueous solution Solid State Ionics. 151 (2002) 347-352.

DOI: 10.1016/s0167-2738(02)00538-6

Google Scholar

[24] X.W. Lu, X.Z. Li, F. Chen, C.N. Ni, Z.G. Hydrothermal synthesis of prism-like mesocrystal CeO2 Chen J. Alloy. Compd. 476 (2009) 958-962.

DOI: 10.1016/j.jallcom.2008.09.198

Google Scholar

[25] J.Q. Chen, Z.G. Chen, J.C. Li Morphology controlling of the ultrafine cerium dioxide (CeO2) precursor J. Mater. Sci. Technol. 20.

Google Scholar

[4] (2004) 438-440.

Google Scholar

[26] V. Privman, D.V. Goia, J. Park, E. Matijevic´Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors J. Colloid Interf. Sci. 213 (1999) 36-45.

DOI: 10.1006/jcis.1999.6106

Google Scholar

[27] J Lu, J.K. Wang Agglomeration, breakage, population balance, and crystallization kinetics of reactive precipitation process Chem. Engineer. 193.

Google Scholar

[7] (2006) 891-902.

Google Scholar